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Abstract. This paper shows how type effect systems can be combined with
model-checking techniques to produce powerful, automatically verifiable pro-
gram logics for higher-order programs. The properties verified are based on the
ordered sequence of events that occur during program execution—anevent his-
tory. Our type and effect systems automatically infer conservative approxima-
tions of the event histories arising at run-time, and model-checking techniques
are used to verify logical properties of these histories.
Our language model is based on theλ-calculus. Technical results include a pow-
erful type inference algorithm for a polymorphic type effect system, and a method
for applying known model-checking techniques to thehistory effectsinferred by
the type inference algorithm, allowing static enforcement of history- and stack-
based security mechanisms.

1 Introduction

Safe and secure program execution is crucial for modern information systems, but is
difficult to attain in practice due to both programmer errors and intentional attacks. Var-
ious programming language-based techniques increase program safety, by verifying at
compile- and/or run-time that programs possess certain safety properties. This paper
proposes a foundation for automated verification of program properties, by defining a
process for automatically predictingevent historiesof program executions at compile-
time, and for specifying and statically verifying properties of these histories. Our par-
ticular focus is on security applications, but the techniques apply broadly.

An eventis a record of some program action, explicitly inserted into program code
either manually (by the programmer) or automatically (by the compiler). Events are
conceived of broadly, and can be a wide array of program actions—e.g.opening a file,
an access control privilege activation, or entry to or exit from a critical region.Histories
are ordered sequences of events; whenever an event is encountered during program
execution, it is appended to the current history stream, and thus histories record the
sequence of program events in temporal order. Program event histories are similar to
audit trails, and provide many of the same benefits for monitoring system activity.

Verification consists of checking to make sure that histories are well-formed,i.e. the
sequence of events prior to a check conforms to specifications. For example, if the pro-
gram is sending and receiving data over an SSL socket, the relevant events are opening
and closing of sockets, and reading and writing of data packets. An example event his-
tory produced by a program run could be:

ssl_open("snork.cs.jhu.edu",4434); ssl_hs_begin(4434);
ssl_hs_success(4434); ssl_put(4434); ssl_get(4434);
ssl_open("moo.cs.uvm.edu",4435); ssl_hs_begin(4434);
ssl_put(4435); ssl_close(4434); ssl_close(4435)



Here,ssl_open is a sample event with two arguments, a url and a port. Event histories
can then be used to detect logical flaws or security violations. For SSL, sockets must
first be opened, handshake begun, handshake success, and only then can data be get/put
over the socket. For example, The above history is illegal because data is put on socket
4435 before notification has been received that handshake was successful on that socket.

The previous paragraph informally defines the well-formed event histories for SSL
connections; codifying this assertion as a local check in a decidable logic would provide
a rigorous definition of well-formedness,and would allow mechanical verification of
it. Such a mechanical verification increases the reliability and security of programs.

1.1 Overview

Several systems have been developed along these general lines; perhaps the principal
division between them is run-time [19, 1]vs. compile-time [3, 7, 4] verification. The
focus of this paper is on the latter.

The systems all have in common the idea of extracting an abstract interpretation
of some form from a program, and verifying properties of that abstraction. The MOPS
system [7] compiles C programs to Push-down Automata (PDAs) reflecting the pro-
gram control flow, where transitions are program transitions, and the automaton stack
abstracts the program call stack. [14, 4] assume that some (undefined) algorithm has
already converted a program to a control flow graph, expressed as a form of PDA.

These aforementioned abstractions work well for procedural programs, but are not
powerful enough to fully address advanced language features such as higher-order func-
tions or dynamic dispatch. Our approach is to develop atype and effectsystem to extract
abstract interpretations from higher-order programs.

Most type systems predict the class of values to which a program will evaluate,
but type and effect systems [24, 2] predict program side-effects as well. In our sys-
tem,history effectscapture the history events generated by programs, with the property
that the effect of a program should conservatively approximate the history generated
by that program during execution. History effects accomplish this by specifying a set
of possible histories containing at least the realized execution history. History effects
yield history streams via an LTS (Labelled Transition System) interpretation: the LTS
transitions produce a label stream from a history effect.

The intepretation of history effects as LTSs allows the expression of program as-
sertions as temporal logical formulae, and the automated verification of assertions via
model-checking techniques [22]. Some of the aforecited systems also automatically ver-
ify assertions at compile-time via model-checking, including [3, 7, 4]. (None of these
works however defines a rigorous process for extracting an LTS from higher-order pro-
grams; there are a few more closely related systems, discussed in the conclusion.) In
these works, the specifications are temporal logics, regular languages, or finite au-
tomata, and the abstract control flow is extracted as an LTS in the form of a finite
automaton, grammar, or PDA. These particular formats are chosen because these com-
binations of logics and abstract interpretations can be automatically model-checked.

Security automata [19] use finite automata for the specification and run-time en-
forcement of language safety properties. Systems have also been developed for stati-
cally verifying correctness of security automata using dependent types [25], and in a



c ∈ C atomic constants

b ::= true | false boolean values

v ::= x | λzx.e | c | b | ¬ | ∨ | ∧ | () values

e ::= v | e e | ev(e) | φ(e) | if e then e else e | letx = v in e expressions

η ::= ε | ev(c) | η; η histories

E ::= [ ] | v E | E e | ev(E) | φ(E) | ifE then e else e evaluation contexts

Fig. 1.λhist language syntax

more general form as refinement types [17]. These systems do not extract any abstract
interpretations, and so are in a somewhat different category than the aforementioned
(and our) work. These systems also lack type inference, and do not use a logic that can
be automatically verified.

Logical assertions can belocal, concerning a particular program point, orglobal,
defining the whole behavior required. However, access control systems [26, 1, 9], use
local checks. Since we are interested in the static enforcement of access control mech-
anisms (see Sect. 6), the focus in this paper is on local, compile-time checkable asser-
tions, though in principle the verification of global properties is also possible in our
system.

1.2 The Technical Development

In the remaining text, we formalize our ideas in the systemλhist: we define the type
and effect system, and develop a type inference algorithm. We next show how theµ-
calculus can be integrated as a static verification logic. A stack-history variant is also
developed, by redefining the history as those events in active frames only. As an ex-
tended example of the system, we show how a rich model of Java stack inspection with
first-class privilege parameters can be expressed via embeddedµ-calculus formulae in
this latter variant.

2 The Languageλhist

In this Section we develop the syntax, semantics, and logical type theory for our lan-
guage model, calledλhist. History effect approximation and type safety results are
stated in Theorem 1 and Theorem 2, respectively.

2.1 Syntax

The syntax of the theoryλhist is given in Fig. 1. The base values include booleans and
the unit value(). Expressionsletx = v in e are included to implement let-polymorphism
in the type system (Sect. 2.3). Functions, writtenλzx.e, possess a recursive binding



η, (λzx.e)v  η, e[v/x][λzx.e/z] (β)

η,¬true  η, false (notT)

η,¬false  η, true (notF)

η,∧ true  η, λx.x (andT)

η,∧ false  η, λ .false (andF)

η,∨ true  η, λ .true (orT)

η,∨ false  η, λx.x (orF)

η, if true then e1 else e2  η, e1 (ifT)

η, if false then e1 else e2  η, e2 (ifF)

η, letx = v in e  η, e[v/x] (let)

η, ev(c)  η; ev(c), () (event)

η, φ(c)  η; evφ(c), () if Π(φ(c), η̂ evφ(c)) (check)

η,E[e] → η′, E[e′] if η, e η′, e′ (context)

Fig. 2.λhist language semantics

mechanism wherez is the self variable. We assume the following syntactic sugarings:

e1 ∧ e2 , ∧e1e2 e1 ∨ e2 , ∨e1e2 λx.e , λzx.e z not free ine

λ .e , λx.e x not free ine e1; e2 , (λ .e2)(e1)

Eventsev are named entities parameterized by constantsc (we treat only the unary
case in this presentation, but the extension ton-ary events is straightforward). These
constantsc ∈ C are abstract; this set could for example be strings or IP addresses.
Ordered sequences of these events constitute historiesη, which maintain the sequence
of events experienced during program execution. We letη̂ denote the string obtained
from this sequence by removing delimiters (;). History assertionsφ, also parameterized
by constantsc, may be used to implement history checks. These assertions are in a to-
be-specified logical syntax (Sect. 4). We presuppose existence of a meaning functionΠ
such thatΠ(φ(c), η̂) holds iff φ(c) is valid for η̂; we also leave the meaning function
Π abstract until later (Sect. 4).

Parameterizing events and predicates with constantsc allows for a more expressive
event language; for example, in Sect. 6 we show how the parameterized privileges of
Java stack inspection can be encoded with the aid of these parameters.

2.2 Semantics

The operational semantics ofλhist is defined in Fig. 2 via the call-by-value small step
reduction relations and→ on configurationsη, e, whereη is the history of run-time
program events. We write→? to denote the reflexive, transitive closure of→. Note
that in theeventreduction rule, an eventev(c) encountered during execution is added
to the end of the history. Thecheckrule specifies that when a configurationη, φ is



α ∈ Vs, t ∈ Vτ , h ∈ VH , β ∈ Vs ∪ Vτ ∪ VH variables

s ::= α | c singletons

τ ::= t | {s} | τ H−→ τ | bool | unit types

σ ::= ∀β̄.τ type schemes

H ::= ε | h | ev(s) | H;H | H|H | µh.H history effects

Γ ::= ∅ | Γ ;x : σ type environments

Fig. 3.λhist type syntax

encountered during execution, the “check event”evφ(c) is appended to the end ofη,
andφ(c) is required to be satisfied by the current historyη, according to our meaning
functionΠ. The reasons for treating checks as dynamic events is manifold; for one,
some checks may ensure that other checks occur historically. Also, this scheme will
simplify the definition ofΠ, as well as history typing and verification, as discussed in
Sect. 4. In case a check fails at runtime, execution is “stuck”; formally:

Definition 1. We say that a configurationη, e is stuckiff e is not a value and there does
not existη′ ande′ such thatη, e → η′, e′. If ε, e →? η, e′ andη, e′ is stuck, thene is
said togo wrong.

The following example demonstrates the basics of syntax and operational semantics.

Example 1.Let the functionf be defined as:

f , λzx.ifx then ev1(c) else (ev2(c); z(true))

Then, in the operational semantics, we have:

ε, f(false)→? ev2(c); ev1(c), ()

since the initial call tof will causeev2 to be added to the history, followed by a recursive
call tof that hits its basis, where eventev1 is encountered.

2.3 Logical Type System

In the type analysis, we are challenged to statically identify the histories that result
during execution, for which purpose we introducehistory effectsH. In essence, history
effectsH conservatively approximate historiesη that may develop during execution, by
representing a set of histories containing at leastη. A history effect may therefore be
an eventev(c), or a sequencing of history effectsH1;H2, a nondeterministic choice of
history effectsH1|H2, or aµ-bound history effectµh.H which finitely represents the
set of histories that may be generated by a recursive function. History types may contain
predicate eventsevφ(c), allowing us to verify predicate checks at the right points in
history effect approximations of “historical developments”. Noting that the syntax of
historiesη is the same as linear, variable-free history effects: We abuse syntax and letη



VAR
Γ (x) = ∀β̄.τ

Γ, ε ` x : τ [τ̄ /β̄]

BOOL

Γ, ε ` b : bool
UNIT

Γ, ε ` () : unit
AND

Γ, ε ` ∧ : bool
ε−→ bool

ε−→ bool

OR

Γ, ε ` ∨ : bool
ε−→ bool

ε−→ bool
NOT

Γ, ε ` ¬ : bool
ε−→ bool

CONST

Γ, ε ` c : {c}

WEAKEN
Γ,H ` e : τ

Γ,H|H ′ ` e : τ

EVENT
Γ,H ` e : {s}

Γ,H; ev(s) ` ev(e) : unit

CHECK
Γ,H ` e : {s}

Γ,H; evφ(s) ` φ(e) : unit

IF
Γ,H1 ` e1 : bool Γ,H2 ` e2 : τ Γ,H2 ` e3 : τ

Γ,H1;H2 ` if e1 then e2 else e3 : τ

ABS

Γ ;x : τ1; z : τ1
H−→ τ2, H ` e : τ2

Γ, ε ` λzx.e : τ1
H−→ τ2

APP

Γ,H1 ` e1 : τ ′
H3−−→ τ Γ,H2 ` e2 : τ ′

Γ,H1;H2;H3 ` e1e2 : τ

LET
Γ, ε ` v : τ ′ β̄ ∩ fv(Γ ) = ∅ Γ ;x : ∀β̄.τ ′, H ` e : τ

Γ,H ` letx = v in e : τ

Fig. 4.λhist logical typing rules

also range over linear, variable-free history effects, interpreting historiesη as the same
history effect.

The syntax of types forλhist is given in Fig. 3. In addition to histories, we include

function typesτ1
H−→ τ2, whereH represents the histories that may result by use of the

function. Events are side-effects, and so these function types are a form of effect type
[24, 2]. Additionally, since events and predicates are parameterized in history types, we
must be especially accurate with respect to our typing of constants. Thus, we adopt
a very simple form of singleton type{c} [23], where only atomic constants can have
singleton type. Types contain three sorts of variables; regular type variablest, singleton
type variablesα, and history effect type variablesh; β ranges over all sorts of variables.
Universal type schemes∀β̄.τ bind any sort of type variable inτ . We writeτ as syntactic
sugar for∀β̄.τ with β̄ ∩ fv(τ) = ∅.

Source code type derivation rules for judgements of the formΓ,H ` e : τ are
given in Fig. 4, whereΓ is an environment of variable typing assumptions. Intuitively,
the history effectH in judgements represents the set of histories that may arise during
execution ofe (this intuition is formalized in the upcoming Theorem 1). For example:

Example 2.Let f defined as in Example 1, and let:

H , (µh.ev1(c) | ev2(c);h); ev3(c′)



Then, the following judgements are derivable1:

∅, ε ` f : bool
µh.ev1(c)|ev2(c);h−−−−−−−−−−−→ unit ∅,H ` f(false); ev3(c′) : unit

Note that let-polymorphism over types, singletons, and history effects is included in our
system. A typingΓ,H ` e : τ is valid iff it is derivable, and ifH is valid in the interpre-
tation defined in the next section. Additionally, typing judgements are identified modulo
equivalence of history effects, as characterized in the next section. We observe that the
addition of history effects is a conservative extension to the underlying type system:
by using weakening before each if-then-else typing, any derivation in the underlying
history-effect-free type system may be replayed here.

2.4 Interpretation of History Effects and Type Safety

As alluded to previously, the interpretation of a history effect is, roughly, a set of histo-
ries. More accurately, we define the Labelled Transition System (LTS) interpretation of
history effects as sets oftraces, which include a↓ symbol to denote termination. Traces
may be infinite, because programs may not terminate.

Definition 2. Our interpretation of histories will be defined via strings (calledtraces)
denotedθ, over the following alphabet:

a ::= ev(c) | ε | ↓

We letΘ range over prefix-closed sets of traces.

Sets of traces are obtained from history effects by viewing the latter as programs in a
simple nondeterministic transition system:

Definition 3. The history effect transition relation is defined as follows:

ev(c)
ev(c)−−−→ ε H1|H2

ε−→ H1 H1|H2
ε−→ H2 µh.H

ε−→ H[µh.H/h]

ε;H ε−→ H H1;H2
a−→ H ′1;H2 if H1

a−→ H ′1

We may formally determine the sets of tracesΘ associated with a closed history effect
in terms of the transition relation:

Definition 4. The interpretation of history effects is defined as follows:

JHK = {a1 · · · an | H
a1−→ · · · an−−→ H ′} ∪ {a1 · · · an ↓ | H

a1−→ · · · an−−→ ε}

Any history effect interpretation is clearly prefix-closed. In this interpretation, an infi-
nite trace is viewed as the set of its finite prefixes.

1 These and following examples simplify history effects according to the equivalences specified
in [21].



τ = τ ′ ∈ C constraints

H v H ′ ∈ HC effect constraints

C ∈ 2C constraint sets

HC ∈ 2HC effect constraint sets

k ::= τ/C,HC constrained types

ς ::= ∀β̄.k constrained type schemes

Γ ::= ∅ | Γ ;x : ς constrained type environments

Fig. 5.Constained types and environments

History effect equivalence is defined via this interpretation, i.e.H1 = H2 iff JH1K =
JH2K. This relation is in fact undecidable: histories are equivalent to BPA’s (basic pro-
cess algebras) [21], and their trace equivalence is known to be undecidable [6].

We then base the validity of a history effect on validity of the assertion events that
occur in traces in its interpretation. In particular, for any given predicate event in a trace,
that predicate must hold for the immediate prefix trace that precedes it:

Definition 5. A history effectH is valid iff for all θevφ(c) ∈ JHK it is the case that:

Π(φ(c), θevφ(c))

holds. A type judgementΓ,H ` e : τ is valid iff it is derivable andH is valid.

An important aspect of this definition is thatJHK containsprefix traces. Essentially,
if Γ,H ` e : τ is derivable, thenJHK contains “snapshots” ofe’s potential run-time
history at every step of reduction, so that validity ofH implies validity of any check
that occurs at run-time, “part-way through” the full program history as approximated
byH. This is formally realized in our primary approximation result for history effects:

Theorem 1. If Γ,H ` e : τ is derivable for closede andε, e→? η, e′ thenη̂ ∈ JHK.

which in turn is the basis of a type safety result forλhist:

Theorem 2 (λchist Type Safety).If Γ,H ` e : τ is valid for closede thene does not
go wrong.

Proofs and details of these results are given in [21].

3 Polymorphic Type and Effect Inference

We implement our type and effect system using a constraint-based technique. This al-
lows us to adopt existing methods [10] for realizing let-polymorphism, with appro-
priate modifications in the presence of history effects– in particular, the addition of
effect constraintsHC to capture weakening in inference. We define the new categories
of type and effect constraints, constraint sets, constrained types, and constrained type
schemes for the algorithm in Fig. 5. We writeτ as syntactic sugar for∀β̄.τ/∅,∅ when
β̄ ∩ fv(τ) = ∅.



VAR
Γ (x) = ∀β̄.k

Γ, ε `W x : k[β̄′/β̄]

CONST

Γ, ε `W c : {c}/∅,∅

EVENT
Γ,H `W e : τ/C,HC

Γ,H; ev(α) `W ev(e) : unit/C ∪ {τ = {α}} ,HC

CHECK
Γ,H `W e : τ/C,HC

Γ,H; evφ(α) `W φ(e) : unit/C ∪ {τ = {α}} ,HC

IF
Γ,H1 `W e1 : τ1/C1,HC 1

Γ,H2 `W e2 : τ2/C2,HC 2 Γ,H3 `W e3 : τ3/C3,HC 3

Γ,H1;H2|H3 `W if e1 then e2 else e3 : t/C1 ∪ C2 ∪ C3 ∪ {τ1 = bool, τ2 = t, τ3 = t} ,
HC 1 ∪HC 2 ∪HC 3

APP
Γ,H1 `W e1 : τ1/C1,HC 1 Γ,H2 `W e2 : τ2/C2,HC 2

Γ,H1;H2;h `W e1 e2 : t/C1 ∪ C2 ∪
{
τ1 = τ2

h−→ t
}
,HC 1 ∪HC 2

FIX

Γ ;x : t; z : t
h−→ t′, H `W e : τ/C,HC

Γ, ε `W λzx.e : t
h−→ τ/C ∪

{
τ = t′

}
,HC ∪ {H v h}

LET
Γ, ε `W v : τ ′/C′,HC ′ Γ ;x : ∀β̄.τ ′/C′,HC ′, H `W e : τ/C,HC

β̄ = fv(τ ′, C′,HC ′)− fv(Γ ) ψ = [β̄′/β̄]

Γ,H `W letx = v in e : τ/ψ(C′) ∪ C,ψ(HC ′) ∪HC

Fig. 6.Type constraint inference rules forλhist

Substitutionsψ are fundamental to our inference method. Substitutions are map-
pings from type variablesβ to types, extended to types constraints and environments in
the obvious manner. We define substitutions assolutionsof constraints via interpreta-
tion in a partially ordered universe of monotypes:

Definition 6 (Interpretation). Monotypesare typesτ such thatfv(τ) = ∅. We letτ̂
range over monotypes, and define4 to be a partial ordering over monotypes such that

τ̂1
H−→ τ̂2 4 τ̂ ′1

H′−−→ τ̂ ′2 impliesτ̂ ′1 4 τ̂1 and τ̂2 4 τ̂ ′2 andH 4 H ′, andH 4 H ′ implies
JHK ⊆ JH ′K. An interpretationρ is a total mapping from type variables to monotypes,
extended to types and constraints in the usual manner (e.g. [18]).



unify(∅) = ∅

unify(C ∪ {τ = τ}) = unify(C)

unify(C ∪ {β = τ}) = fail if β ∈ fv(τ), else
unify(C[τ/β]) ◦ [τ/β]

unify(C ∪ {τ = β}) = fail if β ∈ fv(τ), else
unify(C[τ/β]) ◦ [τ/β]

unify(C ∪ {{s1} = {s2}}) = unify(C ∪ {s1 = s2})

unify(C ∪
{
τ1

h−→ τ2 = τ ′1
h′−→ τ ′2

}
) = unify(C ∪

{
h = h′

}
∪
{
τ1 = τ ′1

}
∪
{
τ2 = τ ′2

}
)

Fig. 7.Constraint set unification algorithm

MGS(C,HC ) = letψ1 = unify(C) in MGSH(ψ1(HC )) ◦ ψ1

bounds(h,HC ) = H1| · · · |Hn where{H1, . . . , Hn} = {H | H v h ∈ HC}

MGSH(∅) = ∅

MGSH(HC ) = letψ = [(µh.bounds(h,HC ))/h] in

MGSH(ψ(HC − {H v h ∈ HC})) ◦ ψ

Fig. 8.Most general solution algorithm

Then, in addition to equality constraints on types, we posit a notion ofv constraints on
types; while type inference only treats such constraints on effects, a generalization of
the relation to types is useful for characterizing type principality, as in Theorem 4:

Definition 7 (Constraint Solution). We say that a substitutionψ solvesor satisfiesa
constraintτ v τ ′, and we writeψ ` τ v τ ′, iff ρ(ψ(τ)) 4 ρ(ψ(τ ′)) for all ρ. We write
` τ v τ ′ iff ∅ ` τ v τ ′. Finally,ψ solves an effect constraint setHC iff it solves every
constraint inHC .

The type inference rules are given in Fig. 6. These rules are nondeterministic only
in the choice of type variables introduced in various rules; without loss of generality, we
assume that all inference derivations are incanonicalform, wherein fresh type variables
are chosen wherever possible.

The use of effect constraintsHC in the type inference rules allows necessary weak-
ening of effects to be inferred where allowable, while equality constraintsC enforce
invariance elsewhere, in keeping with the logical system. To solve equality constraints,
a standard unification technique is defined in Fig. 7; unification of history effects on
function types is trivial, since only variablesh annotate function types in any inferred
constraint setC. Otherwise, as observed in Sect. 2, equality of history effects is un-
decidable. Solvability of effect constraint setsHC generated by inference is decidable
as well, since these also adhere to a specific amenable form. In particular, the effect



constraints generated by type inference will define a system of lower bounds on history
effect variables:

Lemma 1. If ∅,H `W e : τ/C,HC is derivable andψ = unify(C), then for all
H1 v H2 ∈ ψ(HC ),H2 is a history effect variableh.

The result follows sinceHC is a system of lower bounds as a consequence of the infer-
ence rules, andψ preserves this property since unification generates at most a renaming
of any upper boundh in HC .

Thus, a most general solution algorithmMGSH for effect constraint sets is defined
in Fig. 8, which joins the lower bounds inferred for anyh, andµ-bindsh on this join to
account for the possibility of recursive effect constraints. Note that since each distinct
upper boundh represents the effect of some function,µ-bound effects are function
effects in inferred types, a fact that will become significant in Sect. 5. TheMGSH

algorithm is composed with unification to obtain a complete solution for inferred type
constraints. A soundness result is obtainable for this system, as follows:

Theorem 3 (Soundness).If the judgement∅,H `W e : τ/C,HC is derivable and
ψ = MGS (C,HC ), then∅, ψ(H) ` e : ψ(τ) is derivable.

Completeness is also obtainable, comprising a principal types property, as follows:

Theorem 4 (Completeness).If ∅,H ` e : τ is derivable, then so is∅,H ′ `W e :
τ ′/C,HC with MGS (C,HC ) = ψ, where` ψ(H ′) v H and` ψ′ ◦ ψ(τ ′) v τ for
someψ′.

We have developed a prototype implementation of type inference in OCaml, that
has confirmed correctness of the algorithm. The implementation has also demonstrated
the usefulness of simplification techniques for enhancing readability of history effects,
e.g. tranformingµh.H toH in caseh does not appear free inH, transformingε;H to
H, etc.

4 Verification of History Checks

We have described the dynamic model ofλhist, which includes a new event history
component in configurations. We have also described a type system that conservatively
approximates run-time histories. However, we have been abstract so far with respect
to the form of historychecks, basing safety of computation and validity of typing on a
yet-to-be-defined notion of history check validity. To fill in these details, we first define
a logic for run-time checks, including a syntax for expressing checks as predicates in
the logic, together with a notion of validity for these checks that can be automatically
verified in the run-time system. Secondly, we define a means of verifying validity of
history effects, as defined in Definition 5, where check events that are predicted by the
history effect analysis are automatically shown to either succeed or fail in the relevant
context. The latter point is necessary to address because, even though validity of history
effects has been defined, the notion is logical but not algorithmic; in particular,JHK
may be an infinite set. We accomplish automated verification using a temporal logic
and model-checking techniques, allowing us to reuse existing algorithms and results
for history effect verification.



JtrueKV = Θ∞

JxKV = V (x)
J¬φKV = Θ∞ − JφKV

Jφ1 ∧ φ2KV = Jφ1KV ∩ Jφ2KV
J(a)φKV = {θ∞ ∈ Θ∞ | θ∞ = a; θ∞1 andθ∞1 ∈ JφKV }
Jνx.φKV =

⋃
{W ⊆ Θ∞ |W ⊆ JφKV [x7→W ]}

Fig. 9.Semantics of the linear-timeµ-calculus

4.1 Verified Checks in the Linearµ-calculus

While a plethora of model-checking logics are available, we use theµ-calculus [16]
because it is powerful and is syntactically close to historiesH. Further, efficient tech-
niques for the automated verification ofµ-calculus formulas on BPA processes have
been developed [6, 11], and history effects are isomorphic to BPA’s [21]. We use the
linear variant of theµ-calculus [11] because at run-time only one linear trace of events
is known, and so history effectsH and runtime historiesη can only be compared in a
linear-time logic.

Definition 8. The syntax of the linearµ-calculus is:

φ ::= x | true | false | (a)φ | µx.φ | νx.φ | ¬φ | φ ∨ φ | φ ∧ φ

Here,a ranges over arbitrary transition labels; in particular,amay range over events
ev(c). The semantics of the linearµ-calculus is defined in Fig. 9. This semantics is de-
fined over potentially infinite tracesθ∞ ∈ Θ∞ that, unlike sets of tracesθ, may not be
prefix-closed.V denotes a mapping fromµ-calculus variables to sets of potentially infi-
nite traces,∅ denotes the empty mapping.JφK is shorthand forJφK∅. Several formulae
are not given in this figure because they can be defined in terms of the others:φ1 ∨ φ2

is¬(¬φ1 ∧ ¬φ2), false is¬true, andµx.φ is¬(νx.¬φ).
Since our history effect semantics is prefix-closed, we will explicitly prefix-close

JφK so the two sets are compatible.

Definition 9. The prefix closureΘ∞↓ of a set of infinite tracesΘ∞ is:

{θ | θ is a prefix of someθ∞ ∈ Θ∞} ∪ {θ↓ | θ is finite andθ ∈ Θ∞}

Definition 10. The formulaφ is valid forH, writtenH  φ, iff JHK ⊆ JφK ↓.

This relation is decidable by known model-checking results [11] and the above men-
tioned equivalence of BPA processes and histories [21].

4.2 Relating History Effect and History Runtime Properties

We now instantiate the logic of history checks inλhist with linearµ-calculus formulae
φ. As discussed above, the relationH  φ is decidable, so this will make a natural
foundation for history effect verification.



One important requirement of this logic is that formulae must have truth values for
a given history effectH, andfor a history runtimeη. The meaning of a formulaφ under
a run-time historyη is taken by verifyinĝη ∈ JφK ↓. We will define the history check
interpretation functionΠ of Fig. 2 in terms of this relation (Definition 11).

In Theorem 1, history effects were shown to approximate dynamic histories—in
particular, ifε, e →? η, e′ andH,Γ ` e : τ is derivable, then̂η ∈ JHK. The key result
linking the static and dynamic histories is the following:

Lemma 2. If η̂ ∈ JHK andH  φ, thenη̂ ∈ JφK ↓.

Proof. Immediate from Definition 10 and Definition 4.

Theorem 1 ensures that by the above Lemma, verifying a history effect entails ver-
ifying all history checks that may occur at run-time, meaning a combination of type
inference and automated verification yields a sound static analysis forλhist.

4.3 Soundness of Verification

We are close to a complete definition of our logical framework for history checks and
history effect verification. However, a few small points remain: firstly, inλhist, we are
able to parameterize checks with constants with the syntaxφ(c). To implement this,
we specify a distinguished variableχ that may occur free in history checks, which is
assumed to be instantiated with a history check parameter during verification.

Secondly, checksφ should express expected history patterns that may occur up to
the point of the check. This is the same as requiring that if an eventevφ(c) occurs histor-
ically (resp. is predicted statically), the historyη that precedes it (resp. any history that
may precede it as predicted by typing) must exhibit the pattern specified byφ. How-
ever, there is an infinite regress lurking here: a propertyφ that mentions an eventevφ(c)
suggests circularity in the syntax ofφ. Thus, we introduce a distinguished labelNow,
that in any formulaφ represents the relevant checkpoint ofφ. This label is interpreted
appropriately during verification.

We now stand ready to instantiate our logic and verification framework. In the dy-
namic system, this is accomplished by defining the language of history checks, and
by defining the implementation ofΠ, our previously abstract representation of history
check verification:

Definition 11 (Definition ofΠ). The framework of Section 2 is officially instantiated to
let φ range over linearµ-calculus formulae, where labelsa in φ are defined as follows:

a ::= ev(s) | Now

and, lettingχ ∈ Vs be a distinguished variable for parameterizing constantsc in φ, we
defineΠ as follows:

Π(φ(c), θ) ⇐⇒ θ ∈ Jφ[c/χ][evφ(c)/Now]K ↓

Now, we specify what it means for a history effect to be verified; intuitively, it
means that if a history effectH predicts the occurrence of a check eventevφ(c), then
H semantically entailsφ instantiated withc. Formally:



Definition 12 (History Effect Verification). A history effectH is verified iff for all
subtermsevφ(c) ofH it is the case that:

H  φ[c/χ][evφ(c)/Now]

The preceding construction completes the definition of the framework. Lemma 2
and definition ofΠ together yield the desired formal property for history effect verifi-
cation as a Corollary:

Corollary 1 (Verification Soundness).If H is verified, thenH is valid.

Proof. Immediate by Definition 5, Definition 11, Definition 12, and Lemma 2.

5 The Stack-Based Variation

In this section we define a stack-based variation on the framework of the previous
sections, allowing properties of the runtime stack at a program point to be verified at
compile-time. Instead of keeping track ofall events, only events for functions on the
current call stack are maintained, in keeping with a general stack-based security model
(as in e.g. [14]). Assertionsφ in this framework are run-time assertions about theac-
tive event sequence, not all events. While the stack-based model is somewhat distinct
from the history-based model, we show that this variation requires only a minor “post-
processing” of inferred history effects for a sound analysis. There are results showing
how it is possible to directly model-check stack properties of a Push-Down Automata
(PDA) computation [12]; our approach based on post-processing history effects repre-
sents an alternative method, which may also prove useful for modeling features such as
exceptions: the raising of an exception implies any subsequent effect is discarded.

We note that our system captures a more fine-grained stack-based model than has
been previously proposed; in particular, the use of stacks of histories allows the order-
ing of events within individual stack frames to be taken into account, along with the
ordering of frames themselves.

5.1 Syntax and Semantics

The values, expressions, and evaluation contexts ofλShist are exactly those ofλhist, ex-
tended with an expression form·e· and evaluation context form·E· for delimiting the
scope of function activations. We impose the requirement that in any functionλzx.e,
there exist no subexpressions·e′· of e. The operational semantics ofλShist, is a relation
on configurationsS, e, whereS ranges over stacks of histories, defined in Fig. 10. The
active security context for run-time checks is obtained from the history stack in config-
urations, by appending histories in the order they appear in the stack; to formalize this,
we define the notationS; η as follows:

nil; η = η S ::η; η′ = S; η; η′

Selected rules for the reduction relations and→ on configurations are then specified
in Fig. 10 (those not specified are obtained by replacing metavariablesη with S in
reductions for other expression forms in Fig. 2). The history interpretation functionΠ
is defined as forλhist.



S ::= nil | S ::η history stacks

S, (λzx.e)v  S ::ε, ·e[v/x][λzx.e/z]· (β)

S ::η, ev(c)  S ::η; ev(c), () (event)

S ::η, φ(c)  S ::η; evφ(c), () (check)

if Π(φ(c), ˆ(S; η)evφ(c))

S ::η, ·v·  S, v (pop)

Fig. 10.Semantics ofλShist (selected rules)

stackify(ε) = ε

stackify(ε;H) = stackify(H)

stackify(ev(c);H) = ev(c); stackify(H)

stackify(h;H) = h|stackify(H)

stackify((µh.H1);H2) = (µh.stackify(H1)) | stackify(H2)

stackify((H1|H2);H) = stackify(H1;H) | stackify(H2;H)

stackify((H1;H2);H3) = stackify(H1; (H2;H3))

stackify(H) = stackify(H; ε)

Fig. 11.Thestackify algorithm

5.2 Stackified History Effects

AlthoughλShist uses stack rather than history contexts at run-time, we are able to use the
type and verification framework developed previously, assigning types toλShist expres-
sions in the same manner asλhist expressions. The only additional requirement will be
to process history effects– tostackifythem, yielding an approximation of the stack con-
texts that will evolve at run-time. The trick is to useµ-delimited scope in history types,
since this corresponds to function scope in inferred types as discussed in Sect. 3, and
function activations and deactivations induce pushes and pops at run-time. Thestackify
algorithm is defined inductively in Figure 11. This algorithm works over histories that
are sequences; for histories that are not sequences, the last clause puts it into sequence
form.

The last three clauses use history effect equalities characterized in [21] to “mas-
sage” history effects into appropriate form. Observe that the range ofstackify consists
of history effects that are all tail-recursive; stacks are therefore finite-state transition
systems and more efficient model-checking algorithms are possible for stacks than for
general histories [12].

Example 3.With a, b, c, d representing arbitrary events:

stackify(a; (µh.b; c); (µh.c; (ε|(d;h; a)))) = a; ((µh.b; c)|(µh.c; (ε|(d;h)|(d; a))))



Validity of a type judgementΓ,H ` e : τ , and type safety in theλShist, will hinge
upon validity ofstackify(H). We obtain the desired result indirectly, via an equivalent,
but more immediately applicable and technically convenient type logic. Details, omitted
here for brevity, are given in [21]. The main result is Type Safety for stackified history
typings, as follows; the definition ofe “going wrong” here is analogous to Definition 1.
Note that we make an expected restriction on expressions to ensure that the empty stack
is never popped:

Theorem 5 (λShist Type Safety).If the judgementΓ,H ` e : τ is derivable for closed
e with no subexpressions of the form·e′·, andstackify(H) is valid, thene does not go
wrong.

As a corollary of this result and Theorem 2, type inference and verification as developed
for λhist may be re-used in the stack model.

6 Applications

In this section we show that our program logic is sufficiently expressive to be useful
in practice for security applications. First, we show how access control decisions based
on past events in a history-based model can be expressed and typechecked. Then, we
solve an open problem by showing how Java’s parameterized privileges can be statically
modeled.

In our examples we will be interested in unparameterized events and predicates; in
such cases we will writeev andφ for ev(cdummy) andφ(cdummy) respectively, where
cdummy is a distinguished dummy constant. Also, we will abbreviate eventsev i by their
subscriptsi, and the notation:

(∨{ev1(c1), . . . , evn(cn)})φ , ev1(c1)φ ∨ · · · ∨ evn(cn)φ

will be convenient, as will:

(.∗)φ , ev1(c1)φ ∨ · · · ∨ evn(cn)φ

where{ev1(c1), . . . , evn(cn)} for the latter definition is the set of events in a specified
context.

6.1 History-based access control

History-based access control is a generalization of Java’s notion of stack inspection
that takes into account all past events, not just those on the stack [1]. Our language is
perfectly suited for the static typechecking of such security policies. In the basic history
model of [1], some initialcurrent rightsare given, and with every new activation the
static rights of that activation are automatically intersected with the current rights to
generate the new current rights. Unlike stack inspection, removal of the activation does
not return the current rights to its state prior to the activation.



Before showing how this form of assertion can be expressed in our language, we
define the underlying security model. We assume all code is annotated with a “princi-
pal” identifierp, and assume an ACL policyA mapping principalsp to resourcesr(c)
for which they are authorized. An eventevp is issued whenever a codebase annotated
with p is entered. A demand of a resourcer with parameterc, φdemand,r(c), requires
that all invoked functions possess the right for that resource. This general check may be
expressed in our language asφdemand,r, defined in Fig. 12, where we assume given for
verification history effectH containing eventsev1(c1), . . . , evn(cn).

Assertionφdemand,r(c) forces all code principals invoked thus far to have the rights
for r(c). For example, validity of the following requiresr(c) ∈ A(p1) ∩ A(p2):

Γ, p1; p2;φdemand,r(c) ` p1; (λx.p2;φdemand,r(x)) c : unit

The model in [1] also allows for a combination of stack- and history-based prop-
erties, by allowing theamplificationof a right on the stack: it stays active even after
function return. Such assertions can be expressed in our framework using a combina-
tion of stack- and history-based assertions.

6.2 Stack inspection with parameterized privileges

Java stack inspection [26, 20, 18] uses an underlying security model of principals and
resources as defined in the previous section. One additional feature of Java is that any
principal may also explicitly enable a resource for which they are authorized. When a
function is activated, its associated principal identifier is pushed on the stack, along with
any resource enablings that occur in its body. Stack inspection for a particular resource
r(c) then checks the stack for an enabling ofr(c), searching frames from most to least
recent, and failing if a principal unauthorized forr(c) is encountered before an enabling
of r(c), or if no such enabling is encountered.

Stack inspection can be modeled in the stack-based variant of our programming
logic defined in Section 5. Rather than defining the general encoding, we develop
one particular example which illustrates all the issues. Consider the following function
checkit:

checkit, λx.p:system;φinspect,r:filew(x)

Every function upon execution first issues an owner (principal) event, in this case
p:system indicating “system” is the principalp that owns checkit. The function takes a
parameterx (a file name) and inspects the stack for the “filew” resource with parameter
x, via embeddedµ-calculus assertionφinspect,r:filew(x). This assertion is defined below;
it enforces the fact that all functions on the call stack back to the nearest enable must
be owned by principalsp that according to ACLA are authorized for ther:filew(x)
resource.

Now, to model resource enabling we use a special parameterized eventenabler(x),
indicating resourcer(x) is temporarily enabled. We illustrate use of explicit enabling
via an example “wrapper” function enableit, owned by say the “accountant” principal



(p¬r(c))φ , (∨{p|r(c) 6∈ A(p)})φ
φdemand,r(c) , ¬((.∗)(p¬r(c))(.∗)(Now)true)

(p̄)φ , (∨({ev1(c1), . . . , evn(cn)} \dom(A)))φ

(¬ev(c))φ , (∨({ev1(c1), . . . , evn(cn)} \ {ev(c)}))φ
(a∗)φ , µx.(a)x ∨ φ for a ∈ {p̄,¬ev(c)}

φenable-ok,r(c) , ¬((.∗)(p¬r(c))(p̄∗)(enabler(c))true)

φinspect-ok,r(c) , ¬((¬enabler(c)∗)(Now)true) ∧ ¬((.∗)(p¬r(c))(¬enabler(c)∗)(Now)true)

φinspect,r(c) , φenable-ok,r(c) ∧ φinspect-ok,r(c)

Fig. 12.Definitions ofφdemand,r andφinspect,r

p:acct, that takes a functionf and a constantx, and enablesr:filew(x) for the applica-
tion of f to x:

enableit, λf.p:acct; (λx.p:acct; enabler:filew(x); lety = f(x) in y)

The definition ofφinspect,r(c), for fixed r(c), is generalized over parameterized re-
sourcesr(c). For history effectH containing only the eventsev1(c1), . . . , evn(cn), and
parameterized resourcer(c), Fig. 12 gives the definition ofφinspect,r(c). φinspecthas two
parts: first, anyr(c) enabling must be valid viaφenable-ok,r(c); second, we must check
that stack inspections forr(c) are valid viaφinspect-ok,r(c).

Returning to our previous example expressions checkit and enableit, the following
most general types are inferred in our system:

checkit: ∀α.{α}
p:system;φinspect,r:filew(α)
−−−−−−−−−−−−−−−→ unit

enableit: ∀αht.({α} h−→ t)
p:acct−−−−→ {α} p:acct;enabler:filew(α);h−−−−−−−−−−−−−−−→ t

The stackification of the application(enableit checkit(/accts/ledger.txt)) will then gen-
erate the history effectp:acct|H, where:

H = p:acct; enabler:filew(/accts/ledger.txt); p:system;φinspect,r:filew(/accts/ledger.txt)

This reflects that the call and return of the application(enableit checkit) is assigned the
effectp:acct, while the subsequent application to /accts/ledger.txt is assigned effectH.
Assuming that bothp:system andp:acct are authorized forr:filew(/accts/ledger.txt) in
A, verification will clearly succeed on this expression. On the other hand, stackification
of the application checkit(/accts/ledger.txt) will generate the following history effect:

p:system;φinspect,r:filew(/accts/ledger.txt)

for which verification will fail: there is no requiredenabler:filew(/accts/ledger.txt) on
the stack.



7 Conclusions

We have presented a new type effect system, an inference algorithm for inferring effects,
and an algorithm for automatically verifying assertions made about the effects. With this
system, users merely need to decorate code with logical assertions about past events,
and the system will automatically verify those assertions without user intervention.

The original goal of our project was to build the first system to statically model the
parameterized privileges of Java stack inspection, and also to allow the static checking
of general runtime history assertions for enforcing access control policies. We believe
we have succeeded in this regard. But, the system we have produced is not particularly
biased toward access control properties, and thus will be useful in other domains: it can
statically enforce a wide class of event-based runtime invariants.

The type system itself makes several contributions in its combination of expressive-
ness and completeness. The effect system conservatively extends effect-free typing, so
the effects will not “get in the way” of typing. The inference algorithm merges history
effectH in a sound and complete manner instead of attempting to unify them.

7.1 Related Work

Our type effect system shares much of the basic structure of the effect system in [2];
their system lacks our singletons and contextual assertions. Their approach has one sig-
nificant drawback as compared to ours, in that their inference algorithm is not “sound
enough”; it is formally proven sound, but the soundness property doesn’t preclude in-
consistent constraints such asevup = evdown.

Perhaps the most closely related work is [15], which proposes a similar type and
effect system and type inference algorithm, but their “resource usage” abstraction is
of a markedly different character, based on grammars rather than LTSs. Their system
lacks parametric polymorphism, which restricts expressiveness in practice, and verifies
global, rather than local, assertions. Furthermore, their system analyzes only history-
based properties, not stack-based properties as in ourstackify transformation.

The system of [13] is based on linear types, not effect types. Their usagesU are
similar to our history effectsH, but the usages have a much more complex grammar,
and appear to have no real gain in expressiveness. Their specification logic is left ab-
stract, thus they provide no automated mechanism for expressing or deciding assertions.
Our history effects can easily be seen to form an LTS for which model-checking is de-
cidable; their usages are significantly more complex, so it is unclear if model-checking
will be possible.

The systems in [8, 5, 14, 4] use LTSs extracted from control-flow graph abstrac-
tions to model-check program security properties expressed in temporal logic. Their
approach is close in several respects, but we are primarily focused on the program-
ming language as opposed to the model-checking side of the problem. Their analyses
assume the pre-existence of a control-flow graph abstraction, which is in the format for
a first-order program analysis only. Our type-based approach is defined directly at the
language level, and type inference provides an explicit, scalable mechanism for extract-
ing an abstract program interpretation, which is applicable to higher-order functions
and other features. Furthermore, polymorphic effects are inferrable, and events may be



parameterized by constants so partial dataflow information can be included.We believe
our results are critical to bringing this general approach to practical fruition for produc-
tion programming languages such as ML and Java.
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