
Refactoring Programs to Secure Information Flows

Scott F. Smith and Mark Thober
The Johns Hopkins University
{scott,mthober}@cs.jhu.edu

Abstract
Adding a sound information flow security policy to an existing
program is a difficult task that requires major analysis of and
changes to the program. In this paper we show how refactoring pro-
grams into distinct components of high and low security is a useful
methodology to aid in the production of programs with sound infor-
mation flow policies. Our methodology proceeds as follows. Given
a program with no information flow controls, a program slicer is
used to identify code that depends on high security inputs. High
security code so identified is then refactored into a separate com-
ponent, which may be accessed by the low security component via
public method calls. A security policy that labels input data and
checks the output points can then enforce the desired end-to-end
security property. Controlled information releases can occur at ex-
plicit declassification points if deemed safe. The result is a well-
engineered program with explicit interfaces between components
of different security levels.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Frameworks, In-
put/output ; D.2.2 [Software Engineering]: Design Tools and
Techniques—Modules and interfaces; K.6.5 [Management of
Computing and Information Systems]: Security and Protection.

General Terms Design, Languages, Security.

Keywords Information flow, refactoring, declassification, slicing.

1. Introduction
Language-based information flow security [4, 7, 20] focuses on en-
suring the confidentiality of data in programs. High security inputs
should not affect low security outputs, whether directly (such as
passing a secure value to a low output) or indirectly (such as a con-
ditional on a secure value that affects a low output). This is known
as a noninterference property [9]. In practice, such a property is too
restrictive, since real programs will leak some amount of sensitive
information (e.g. a boolean comparison with a password could be
output to the screen even though the password is a secret). Such
information release is allowed through an explicit declassification
[16]. In this setting, application developers must declare the secu-
rity levels of the input and output points, and specify any declassifi-
cations in the source code; some information flow systems require
further code annotations to provide security.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLAS’06 June 10, 2006, Ottawa, Ontario, Canada.
Copyright c© 2006 ACM 1-59593-374-3/06/0006. . . $5.00.

Information flow security models the flow of information
through a program. This differs from an access control model
which governs the authorization for actions. Other forms of se-
curity, such as process privileges and stack inspection, are out of
the scope of information flow security. We make the assumption
that the underlying platform is trusted and that secure IO channels
are indeed secure.

Most information flow research has focused on proving formal
properties about small languages [28, 12, 3]. There have been
a few efforts focusing on practical incorporation of information
flow into programming systems [15, 17], but these systems are
still several steps away from practical feasibility: they place a
significant overhead on the programmer due to the need to place
a large number of annotations in the program.

Several authors have observed how programs naturally segment
for information flow security purposes. Li and Zdancewic [13]
observe that “noninterfering programs can be factored into a ’high
security’ part and a ‘low security part.’ ” Functions that depend on
high-level data require “downgrading policies” in order to allow a
declassified flow from high to low. Amtoft and Banerjee [2] show
how forward slicing can be used to remove code that depends on
a high-level variable h from a program P , and produce a program
P0. “Then a user, wanting to compute the low variables but (for
security reasons) not given clearance to view h, could be given P0

to run, rather than P .”
Software refactoring and restructuring has recently been a topic

of much research [14]. However, this research has focused on
software design issues, such as compatibility, reusability, and ef-
ficiency, and not on security. The point of this paper is how the
technique of refactoring can be applied for security purposes: refac-
toring programs into high- and low-security components [24] will
improve code security in practice. Refactoring out the high-security
data puts all the code operating on security-critical data, which is
usually a very small portion of an application, in its own compo-
nent, where it can be subject to significantly higher standards of
correctness in coding, testing, and verification. This paper focuses
on the challenges and benefits of performing such refactorings on
real programs. We illustrate our ideas via examples, including a
refactoring of a portion of the OpenSSH client code [30]. One im-
portant aspect of refactoring is only sound refactorings must be per-
formed, i.e. refactorings which do not change the meaning of the
programs.

Figure 1 diagrams how refactoring transforms a program by seg-
menting it into high- and low- security components, with an access
channel between the two portions. The low component will only
take low inputs and produce low outputs, although it may accept
declassified flows from the high component. The high component
accepts both high and low inputs, and may produce only high out-
puts. For strict noninterference [9], there will be no flows from the
high portion to the low portion.

By isolating high security code portions, programmers can more
easily add information flow controls to a program, as the compo-

nent boundaries are now the clear places where high security data
affects low security data. Just as important is the fact that appli-
cation developers can now be confident in a program’s security
policies by observing explicit interactions between security levels.
Since the high security code is placed in its own component, de-
velopers need only study the high security code and its component
interfaces to ensure security; this means a huge reduction in the
amount of code that must be inspected. Realistic programs gener-
ally only have a small portion of the code performing high security
operations; for example, some Microsoft groups have noted that
less than 20 percent of their code is security-critical [8], and some
experiments with privilege separation have shown there is approx-
imately one privileged call in 2,800 lines of source code [5]. By
refactoring out this critical code, programmers will be able to put
more focus on it. And, a refactoring that produces a large high se-
curity component may indicate erroneous design [23].

The rest of this paper is structured as follows. Our basic refac-
toring methodology appears in section 2. Section 3 presents an ex-
ample that refactors part of the SSH client for security of private
keys. This leads to some more complex issues for refactoring real
programs, which is discussed in section 4. We discuss related work
in section 5.

2. Refactoring Methodology
We now address the core concepts and challenges involved in refac-
toring for information flow security. The refactoring entails three
main tasks: first, identifying sensitive code; second, performing a
series of sound refactorings which produces a new component con-
taining all of the high-security code; and third, potentially adding
explicit information flow controls, likely in the form of explicit de-
classifications. Developers can take a program that does not have
any information flow security and iterate through the refactoring
tasks to produce a secure program.

In this paper we take an IO-centric approach to information
flow: we assume that all IO channels are labeled as either high-
or low- security input or output, and that these are the only data
label points in the program. The advantages of this approach are
discussed in [21]: effective tracking of information in programs
begins and ends at the program’s boundaries, and so only those
points need to be explicitly labeled; all other labels can be inferred.
Information flow security must emphasize clear boundaries and
rigorously control information across the boundaries.

We use an informal framework for our examples as follows. The
examples use C and C++ code due to our focus on OpenSSH; the
methodology should apply to other languages however. We assume
a labeling for input channels, such that low inputs label data low,
and high inputs label data high. In a program with sound informa-
tion flow, data labeled high is not output on low output channels, or
out of the high-security component. We assume an addition to the
language of the statement Declassify(e,high), that removes the
high label from the expression e. We assume these labels are prop-
erly tracked using a sound static information flow analysis that we
do not specify here. For simplicity, this paper considers only high
and low security levels. Although some additional complications
arise, we believe a similar methodology will apply to programs with
multiple security levels.

We illustrate the basic refactoring tasks with an oversimplified
example of a login routine. The initial program is in Figure 2. This
program inputs a username and password from the keyboard, then
attempts to authenticate the user by comparing the username and
password with those on the file system.

In this example, the high security data is the username and
password stored on the system, which should not leak to public
output channels. In the following sections, we show how to identify
the high security portion of this code for refactoring, perform the

1: int main() {
2: char uname[15];
3: char passwd[15];
4: char* syspasswd;
5:

6: scanf("%s",uname);
7: scanf("%s",passwd);
8: syspasswd = getPasswd(uname,"/etc/passwd");
9: if (!strcmp(syspasswd,passwd)) {
10: printf("access granted");
11: } else {
12: printf("access denied");
13: exit(0);
14: }
15: /* Execution proceeds */
16: }
17:

18: char* getPasswd(char* uname, char* file) {
19: /* Returns the password for uname in file */
20: }

Figure 2. Login Code

refactoring, and add information flow controls to the refactored
program.

2.1 Identifying Sensitive Code
To refactor out high security portions of a program, one must
identify where high security data flows through a program. Thus,
identification begins at high security input points and continues to
wherever this data flows. We adopt a program slicing terminology
to the identification task, as slices are natural lines along which to
refactor programs [27].

A static program slicer is specified as follows. Given a language
grammar and an operational semantics, let P be a valid program in
the language. Slicing criteria are defined for forward and backward
slices.

DEFINITION 2.1. A forward slicing criterion Cin of a program P
is a pair (l, vin), where l is a line number in P and vin is an input
at l in P. A backward slicing criterion Cout of a program P is a
pair (l, vout), where l is a line number in P and vout is an output
at l in P.

The relations affects and affected define the statements that
either affect or are affected by slicing criteria.

DEFINITION 2.2. Given a program P, and criterion Cin = (l, vin).
For any statement s, affected(P, Cin , s) is true if any change in
the value of vin may cause a change in the value at s, and false
otherwise.

DEFINITION 2.3. Given a program P, and criterion Cout =
(l, vout). For any statement s, affects(P, Cout , s) is true if any
change at s may cause a change in vout , and false otherwise.

A forward slice of a program P with respect to criterion Cin

is a subset of statements and expressions of P that is directly or
indirectly affected by the value at the slicing criterion.

DEFINITION 2.4. For program P and criterion Cin , a forward
slice Sf (P, Cin) = {s|affected(P, Cin , s)}.

A backward slice of a program P with respect to criterion Cout

is a subset of statements and expressions of P that directly or
indirectly affect the value at the slicing criterion.

High
Output

Low
Output

High
Input

Low
Input

Original Program

(a) Original Program

Public method
accessLow Security

Component
High Security
Component

High
Output

Low
Input

High
Input

Low
Input

Low
Output

Declassified Data

(b) Refactored Program

Figure 1. Program Refactoring to High and Low Security Portions

DEFINITION 2.5. For program P and criterion Cout , a backward
slice Sb(P, Cout) = {s|affects(P, Cout , s)}.

Note that forward and backward slices are not necessarily ex-
ecutable programs. A program slicer is any analysis that soundly
computes forward and backward program slices when given a slic-
ing criterion.

A slicer satisfying the above definitions is needed to determine
all affected code, so possible leaks of information flows will not
be missed. Either a program slicer using PDGs [10, 19] or an
information flow type inference system [17, 21] could be used to
infer high and low slices. PDG-based slicers have the advantage
of being flow-sensitive, taking the order of data operations into
account, but have limited expressiveness on higher-order programs.
This paper is neutral to whether a slicer or a type inference system
has calculated the slices; the examples in this paper have been
sliced by hand.

Using a forward slice from a high security input creates a high
slice, i.e. all of the code that this high input reaches. A backward
slice from a low security output creates a low slice, i.e. all of the
code that affects the low output. This paper focuses on high security
inputs, so the concern is with forward slicing from a high input.
Figure 3 shows all of the code affected by the high security inputs
from the system password file. The slicing criterion is the input
from the getPasswd method (line 19) called on line 8. The slice is
indicated by highlighted statements.

In some programs with both high and low security data, the
initially calculated high slice may be too large, possibly including
the entire program. This is of course undesirable, and it indicates
either that there is an error or that declassifications of high-security
data at some points are justified.

In the login example, the screen (System.out) is a low security
output, so high security data here affects a low output. This leak is
however required for proper function of password-based authenti-
cation, and so is a point where declassification is justified. So, once
the comparison is done, the high security data can be declassified,
so it does not taint the rest of the program. Therefore, the code after
the conditional at line 9 can remain part of the low security code. In
the presence of existing declassifications, computation of the high
slice stops wherever a declassification of the tracked flow occurs.

2.2 Refactoring
Once a high slice has been identified, the next step is to refactor it
into a new component. Note that in some cases it is necessary for
the high component to contain code that is not in the high slice,
such as variable declarations and some low input channels. This

1: int main() {
2: char uname[15];
3: char passwd[15];
4: char* syspasswd;
5:

6: scanf("%s",uname);
7: scanf("%s",passwd);
8: syspasswd = getPasswd(uname,"/etc/passwd");
9: if (!strcmp(syspasswd,passwd)) {
10: printf("access granted");
11: } else {
12: printf("access denied");
13: exit(0);
14: }
15: /* Execution proceeds */
16: }
17:

18: char* getPasswd(char* uname, char* file) {
19: /* Returns the password for uname in file */
20: }

Figure 3. Login Code with High Slice

does not introduce any security risks, as we only need to guarantee
that all of the high slice is in the high component.

Figure 4 shows the refactored login code. Here we are refac-
toring to C++ to take advantage of object-oriented language fea-
tures. The class Login is created with a field for holding the
name of the file. The authentication of the user to the system has
been moved to this new class and is accessible through the pub-
lic method authenticate. The getPasswd method becomes a
private method to the class, as it is needed only in the high secu-
rity context. The syspasswd string is eliminated, as it is no longer
needed.

High security code in the refactored program is highlighted. In
the low component, high security operations have been reduced to
calls to public methods in the high component.

Refactoring is best accomplished in a maximal munch-style,
taking the largest possible code block that contains only high code
and refactoring it into a method. This may be infeasible when high
code is tightly interwoven with low code, requiring more complex
refactorings. Yet we contend that most programs are written in
a manner that performs high security operations in chunks, e.g.
reading from a sensitive file or setting up a high security data
structure. Our SSH example confirms this (section 3). Code blocks
refactored from code portions that remain low are put into public

High Component:

1: class Login {
2: public:
3: Login(char* f) { file = f; }
4:

5: bool authenticate(char* uname, char* passwd) {
6: bool success = false;
7: if (!strcmp(getPasswd(uname),passwd)) {
8: success = true;
9: }
10: return Declassify(success,high);
11: }
12: private:
13: char* file;
14: char* getPasswd(char* uname) {
15: /* Returns the password for uname in file */
16: }
17: };

Low Component:

1: int main() {
2: char uname[15];
3: char passwd[15];
4: Login l("etc/passwd");
5:

6: scanf("%s",uname);
7: scanf("%s",passwd);
8: if (l.authenticate(uname,passwd)) {
9: printf("access granted");
10: } else {
11: printf("access denied");
12: exit(0);
13: }
14: /* Execution proceeds */
15: }

Figure 4. Refactored Login Code

methods in the new class, and calls to these methods are put in the
low code where the refactored code was removed.

In addition to refactoring chunks of code, entire functions may
be moved to the high-security component. Functions that are called
solely by high code portions may be moved to high-security classes
as private methods. In a similar manner, variables and data struc-
tures holding high security data may be placed as private fields in
the new class.

The refactoring process can be improved with automated as-
sistance. Semi-automated refactorings are transformations that en-
sure the correctness and behavior-preservation of the change [14,
26]. For example, an automated MoveMethod refactoring moves
a method from one class to another, checking for naming clashes
and other standard problems. Fully automated refactorings are not
feasible, however, because they often result in code that is more dif-
ficult to understand [14, 6]. Furthermore, the choice of which refac-
torings to perform must be decided by the developer. For example,
the high slice through a method body may not include initialization
code, yet the entire method may be moved to the high component.

2.3 Adding Information Flow Controls
Adding information flow controls to programs that previously had
none can be challenging, and may require significant additional ef-
fort by the developer. Data must properly be labeled at input points,
and checks need to be placed at output points. This is a crucial
step in the process, as systems can only guarantee information flow
security that satisfies the labeling and checking mechanisms; they
cannot guarantee that the labels and checks are themselves the cor-

rect policy. It is up to the programmer to write the correct policy
concerning IO points.

Improper placement of declassification statements can cause se-
curity leaks in a program if sensitive data is inadvertently declassi-
fied. Deciding that declassification is “safe” is a difficult task that
requires knowledge of the program implementation. Section 4.2 de-
scribes the challenges of aiding programmers in placing declassifi-
cations, and discusses some principles for overcoming these prob-
lems using refactoring.

For our login example in Figure 4, the getPasswd method must
label the data coming in on the file input stream as high. The result
of the boolean comparison of the user’s password on the system
with the challenge password is declassified in authenticate; this
result can safely be passed to the public code portion, which passes
the result to a low output channel.

3. Refactoring SSH
In order to see some of the subtle issues arising from refactoring
out the high slice, we study the OpenSSH client implementation.
We focus on a specific portion of authentication in the client,
namely the combined rhosts-RSA authentication. We first provide
a short discussion of how this authentication method works, and
how information flow security is useful. Note this authentication
method is specific only to SSH-1. A segmenting of the OpenSSH
server into different components for better security was carried out
in [18]; this shows another example of transforming programs to
make security boundaries more clear. The boundary of concern in
this paper was privileged access rights and not privileged data.

Users can be authenticated via rhosts combined with RSA as
follows. If the .rhosts file exists in the user’s home directory on
the remote machine and contains a line containing the name of the
client machine and the name of the user on that machine, and if
additionally the server can verify the client’s host key, only then
login is permitted. This authentication method closes security holes
due to IP spoofing, DNS spoofing and routing spoofing [31].

This method is of particular concern from an information flow
security standpoint, as it requires the client to load the private keys
of the host in order to verify its identity to the server. Thus, the
programmer must be extremely careful to ensure the host’s private
keys are not leaking either to the server, or an improper location on
the local file system.

The analyzed code in this section is from OpenSSH version
3.9, developed by Tatu Ylonen [30]. We omit any portions of the
SSH client code that are not significant for the purpose of this
example, such as local variable declarations, initialization, and
option processing. We also omit details where a simple explanation
suffices. These explanations are of the form of special comments:
/* omitted code */. Other comments are included for readability.

We now discuss the identification and refactoring of the pro-
gram, and address the more difficult issues of library calls and IO
channels in section 4.

3.1 Identification
The relevant SSH client source code is given in figures 5 and 6.
Identification uses the forward slice of the program starting at the
input point of the private keys (figure 6 line 7), The slice spans
the methods main, ssh login, and ssh userauth1, all of which
reside in separate files. Only the portions of these methods related
to rhosts-RSA authentication are identified. Note that we only load
one key in this simplified code, whereas the actual SSH client may
load several private keys.

The functions in figure 6 are all almost entirely in the high slice,
as they are affected by the private key input. Notably, the input from
the server is not part of the high slice, as slicing only shows the
statements directly affected by the criterion. However, since these

1: int main(int ac, char **av)
2: { /* setup code */
3: if (ssh connect(host, &hostaddr, options) != 0)
4: exit(1);
5:

6: PRIV START;
7: fd = open(PATH HOST KEY FILE, O RDONLY);
8: keys[0] = return key load private rsa1(fd,
9: PATH HOST KEY FILE, "", NULL);
10: PRIV END;
11:

12: ssh login(sensitive, host,
13: (struct sockaddr *)&hostaddr, pw);
14:

15: key free(keys[0]);
16: keys[0] = NULL;
17: xfree(keys);
18:

19: exit status = ssh session();
20: packet close();
21: return exit status;
22: }
23:

24: void ssh login(&sensitive data,const char *orighost,
25: struct sockaddr *hostaddr, struct passwd *pw)
26: { /* setup code */
27: ssh kex(host, hostaddr);
28: ssh userauth1(local user, server user, host,
29: sensitive);
30: }
31:

32: void ssh userauth1(const char *local user, const char
33: *server user, char *host, Sensitive *sensitive)
34: {
35: /* Send username *local user to server */
36: type = packet read();
37: if (type == SSH SMSG SUCCESS)
38: return; /* Authenticated without password */
39:

40: if (sensitive->keys[0] != NULL &&
41: sensitive->keys[0]->type == KEY RSA1 &&
42: try rhosts rsa authentication(local user,
43: sensitive->keys[0])) {
44: goto success;
45: }
46: /* other authentication methods */
47: success: return;
48: }

Figure 5. SSH Client Code

inputs involve only the RSA algorithm, they should be in the high
component.

3.2 Refactored Components
We now refactor the SSH client into high- security and low-security
components. The low component of the refactored SSH client ap-
pears in figure 7. In the low component, a highlighted statement
delineates calls to code in the high component. The main method
calls ssh connect to initiate a connection with the server. Assum-
ing the connection is successfully established, the program pro-
ceeds to authentication. At this point, the program loads the private
keys for the client machine. Code for loading the private keys has
been refactored to the high component. ssh login is then called,
which attempts to authenticate the user, possibly using the private
keys, which are passed as argument. Upon successful return of
ssh login (assuming the user is authenticated), the private keys

1: static Key * key load private rsa1(int fd, const char
2: *filename, const char *passphrase, char **commentp)
3: {
4: buffer init(&buffer);
5: cp = buffer append space(&buffer, len);
6:

7: read(fd, cp, (size t) len);
8:

9: prv = key new private(KEY RSA1); /* initialize key */
10: buffer get bignum(&buffer, prv->rsa->n);
11: buffer get bignum(&buffer, prv->rsa->e);
12: /* Read public key from buffer. */
13:

14: /* Rest of the buffer is encrypted. Decrypt it. */
15:

16: buffer get bignum(&decrypted, prv->rsa->d);
17: /* Read private key. */
18: buffer free(&decrypted);
19: close(fd);
20: return prv; /* The private key. */
21: }
22:

23: static int try rhosts rsa authentication(
24: const char *local user, Key * host key)
25: {
26: /* Send public key to server for authentication. */
27: type = packet read(); /* Server’s response, a challenge. */
28: respond to rsa challenge(challenge, host key->rsa);
29: BN clear free(challenge); /* Delete challenge. */
30: type = packet read(); /* Server Response */
31: if (type == SSH SMSG SUCCESS) { return 1; }
32: return 0;
33: }
34:

35: static void respond to rsa challenge(BIGNUM *
36: challenge, RSA * prv)
37: {
38: rsa private decrypt(challenge, challenge, prv)
39: /* Compute MD5 of decrypted challenge plus session id. */
40: BN bn2bin(challenge, buf + sizeof(buf) - len);
41: MD5 Init(&md);
42: MD5 Update(&md, buf, 32);
43: MD5 Update(&md, session id, 16);
44: MD5 Final(response, &md);
45: /* Send the response back to the server. */
46: }

Figure 6. SSH Client Code Continued

are discarded via a call to the high component, and the SSH session
begins.

The ssh login method is unchanged by the refactoring, as it
is merely a conduit for user authentication. The ssh userauth1
method transmits the username to the server for logging in. If the
server responds with success (i.e. the user has no password), the
method returns. Otherwise, it proceeds through the authentication
methods, the first of which is combined rhosts-RSA, which has
been moved to the high component. Other authentication methods
(e.g. password input) are omitted from this simplified code.

Figure 8 shows the refactored high component, which creates a
new class, Sensitive. The method loadPrivateKeys loads the
keys of the client machine. The PRIV START macro is first called to
give the program root access for reading the keys, PRIV END will
later release this access. The method key load private rsa1
is called to read the key from the file. The clearPrivateKeys
method destroys the private keys by freeing the memory and setting
the corresponding pointer to NULL.

1: int main(int ac, char **av)
2: { /* setup code */
3: if (ssh connect(host, &hostaddr, options) != 0)
4: exit(1);
5: Sensitive sensitive();
6: sensitive.loadPrivateKeys();
7:

8: ssh login(sensitive, host,
9: (struct sockaddr *)&hostaddr, pw);
10: sensitive.clearPrivateKeys();
11:

12: exit status = ssh session();
13: packet close();
14: return exit status;
15: }
16:

17: void ssh login(Sensitive& sensitive,const char
18: *orighost, struct sockaddr *hostaddr,
19: struct passwd *pw)
20: { /* setup code */
21: ssh kex(host, hostaddr);
22: ssh userauth1(local user, server user, host,
23: sensitive);
24: }
25:

26: void ssh userauth1(const char *local user, const char
27: *server user, char *host, Sensitive& sensitive)
28: {
29: /* Send username *local user to server */
30: type = packet read();
31: if (type == SSH SMSG SUCCESS)
32: return; /* Authenticated without password */
33: if (sensitive.authenticateWithRSARhosts(local user))
34: {
35: goto success;
36: }
37: /* other authentication methods */
38: success: return;
39: }

Figure 7. SSH Client Refactored: Low Component

Note both loadPrivateKeys and clearPrivateKeys were
initially blocks of code in main, which have been moved into new
public methods. authenticateWithRSARhosts contains the code
taken from ssh userauth1 and so is a public method. The return
value of this method indicates success or failure of authentication.
This value has its high label declassified, since information flow
control tracks the leak from the private key to this point. Declassi-
fication is intensional and returning success or failure of authenti-
cation is deemed “safe,” as it leaks very little information about the
private key.

The entire key load private rsa1 has been placed into the
high component as a private method, since it is only accessed
by loadPrivateKeys. try rhosts rsa authentication and
respond to rsa challenge are also refactored as private meth-
ods. The data structure for holding the keys, a Keys struct, along
with the number of keys nkeys are now private fields in the
Sensitive class. This prohibits access to the keys from outside
the class, except through the public methods.

Refactoring moves all of the sensitive code from the initial pro-
gram to a high component, so that the low code accesses sensitive
operations through calls to the public methods in the high com-
ponent. There are some subtle issues involved in this refactoring,
which we discuss in the next section.

1: class Sensitive {
2: public:
3: Sensitive() { /* Initialization of data structure. */ }
4: void loadPrivateKeys() {
5: int fd;
6: PRIV START;
7: fd = open(PATH HOST KEY FILE, O RDONLY);
8: keys[0] = return key load private rsa1(fd,
9: PATH HOST KEY FILE, "", NULL);
10: /* The data in keys[0] must be labeled sensitive */
11: PRIV END;
12: }
13: void clearPrivateKeys() {
14: key free(keys[0]);
15: keys[0] = NULL;
16: xfree(keys);
17: }
18: bool authenticateWithRSARhosts(char *local user) {
19: bool success = false;
20: if (keys[0] != NULL && keys[0]->type == KEY RSA1
21: &&
22: try rhosts rsa authentication(local user, keys[0]))
23: success = true;
24: }
25: return Declassify(success,high);
26: }
27: private:
28: Key **keys;
29: int nkeys;
30:

31: static Key * key load private rsa1(int fd,
32: const char *filename, const char *passphrase,
33: char **commentp)
34: { /* Same code as in figure 6 */ }
35:

36: static int try rhosts rsa authentication(
37: const char *local user, Key * host key)
38: { /* Same code as in figure 6 */ }
39:

40: static void respond to rsa challenge(BIGNUM *
41: challenge, RSA * prv)
42: { /* Same code as in figure 6 */ }

Figure 8. SSH Client Refactored: High Component

4. Challenges of Refactoring Real Programs
In the previous sections, we have described a simple technique
for refactoring programs into high and low security components.
It would be nice if all programs could quickly and easily be seg-
mented into two portions, being entirely clear which code belongs
in each portion, with a simple, concise interface between the two.
Unfortunately, for real programs things are not so simple. Real pro-
grams use libraries, high and low components may share code, and
placement of declassification points is non-trivial. The following
sections address these challenges and present techniques to deal
with these issues. We illustrate these challenges using the OpenSSH
example from the previous section.

4.1 Hybrid Components
Many programs use methods that will be used by both high and
low security components. For example, OpenSSH uses buffers for
many purposes, both in the high and low components. The act
of loading private keys in Figure 6 buffer, which in the end is
destroyed using the buffer free call on line 18. The code for
this function is shown in figure 10. This function is called many
times in the OpenSSH program, including in the low component
(although they do not appear in our shortened example). Since

Declassified
Return

Low
Output

Low
Input

High
Input

Low
Input

Low Security
Component

High Security
Component

Hybrid
Component

High
Output

Call

Method Call

Return Call

(a) Program with Hybrid Component

Declassified
Return

Low
Input

Output
Low

Low Security
Component

Low
Input

High
Input

High Security
Component

High
Output

Call

Return

Call
Library

(b) Program with Library Component

Figure 9. Program Refactoring Showing Libraries and Hybrid Components

buffer free is used in both components, it does not belong solely
in one component, as it affects both high and low data. Thus, hybrid
components are necessary for functions that are used for both the
high and low security components.

1: void buffer free(Buffer *buffer)
2: {
3: if (buffer->alloc > 0) {
4: memset(buffer->buf, 0, buffer->alloc);
5: buffer->alloc = 0;
6: xfree(buffer->buf);
7: }
8: }

Figure 10. SSH Buffer Code

Program slicing lacks the formalism to describe label polymor-
phism, so we adopt the formalism from information flow type sys-
tems, where label types are assigned to expressions that describe
the security label of the expression. In order to provide reusable
code, methods must be polymorphic in the label types of the argu-
ments and return values, so they can be used on both high and low
level data. The need for hybrid components arises due to this label
polymorphism.

A hybrid component consists of methods that are label polymor-
phic and are used in both high and low components. This definition
is valid only when the hybrid component has no information flow
leaks. In other words, the program is well-typed in an information
flow type system. Figure 9(a) illustrates a hybrid component that is
accessed by both high and low components.

In the context of adding information flow security to a program
that previously had none, what remains is deciding which methods
should be in a hybrid component. We address this with the follow-
ing rules for finding candidates for hybrid methods, and showing
which candidates correctly belong in a hybrid component.

• Hybrid methods must actually be used by both high and low
components. A method used only by a high component need not
be shared—it is more natural to leave it in the high component.
Candidates for hybrid methods are identified by intersecting the
methods in the high slice with those in the low slice (recall the
low slice is the backward slice from a low output point).

• Hybrid methods should not perform any security operations on
input data. Thus, hybrid methods should contain no data label,
check, or declassify commands. Doing any of these operations
clashes with the polymorphic nature of hybrid components.

• Any potential back-channels in a method means it should not be
refactored into a hybrid component. For example, static fields
create a back-channel for information leakage between two
different objects of the same class.

A violation of these rules indicates a method should not be
placed in a hybrid component. The first two rules will keep inappro-
priate code out of the hybrid slice. The last rule is a consequence of
the information flow policy: any such back-channel will be flagged
as a security violation by the analysis.

Violations of the second rule can be checked by observing any
methods identified as hybrid candidates by this process. One must
simply make sure that these methods do not contain the security
operations. This is an easy syntactic check.

Checking candidate hybrid methods for violations of the third
rule is a bit more complex. Sharing data via static fields pro-
vides another channel for possible information flow leakage. Hy-
brid components can accommodate static variables, as long as they
reside solely in the high or low component. Information is allowed
to flow between two objects in the high component through this
channel, which does not violate the information flow policy.

For an example of an unsound static field, suppose the method
buffer free was defined in a class Buff as in figure 11. Due to
the conditional at line 6, the static field size may hold the size of
the buffer containing the data. This is a security leak if buffers are
used in both high and low components, as Buff objects in the low
component can access high data through the static field size.

The high slice will include this leak, thus tainting the code all
the way to the low output. Indeed, unless this flow is specifically
allowed via declassification, an information flow analysis will show
the error. If this use of the static field is desired, the Buff class
should be put in the high component, and a different class must be
used in the low component.

Library and hybrid components are similar, as figure 9 shows.
Indeed, both indicate code re-use, although hybrid code is meant
only for the current program, whereas library code is usually writ-
ten by someone other than the programmer, for a more general use.

Figure 9(b) shows a refactored program with a high library com-
ponent that is used by the high component. Consider the MD5 calls

1: class Buff {
2: static int size;
3:

4: void buffer free(Buffer *buffer)
5: {
6: if (buffer->alloc > 50) { size = buffer->alloc; }
7:

8: if (buffer->alloc > 0) {
9: memset(buffer->buf, 0, buffer->alloc);
10: buffer->alloc = 0;
11: xfree(buffer->buf);
12: }
13: }
14: }

Figure 11. Buffer Code with Static Field

in lines 41-44 of figure 6. The assumption is that the library meth-
ods correctly implement the MD5 hash of the decrypted challenge
that is passed to it. In this example, the MD5 library component is
used only by the high component; yet it could also be used by the
low component, since the library methods do not affect the security
level of the arguments.

4.2 Declassification
Placement of declassification points is a central task in refactoring
for information flow security. If a program initially has no informa-
tion flow policy, the refactoring also assists in the initial placement
of declassifications. A high slice that crosses the component bound-
ary to the low component signals a leak that should be carefully
evaluated and in the end may be deemed “safe”, and a declassifica-
tion statement inserted. Programmers need to be extremely careful
when declassifying flows across the component boundary, as one
unsound declassification can defeat the security of the whole sys-
tem. For example, declassifying a password string allows the actual
password to leak through a public output channel. The information
flow system would not report an error, yet a leakage occurs since
the policy was wrong. Placement of declassifications requires sig-
nificant knowledge of the code, in order to determine when it is
“safe” to declassify. Nevertheless, we can help programmers in de-
classification decisions by establishing some principles.

Principle: Declassification should be done only upon method re-
turn. This allows the declassification to be shown in the API. De-
velopers can then see what is being declassified, and determine at
a conceptual level whether or not the declassification is warranted,
then observe the method’s code to make sure the implementation is
correct, so no unsafe leaks are made.

1: int rsa private decrypt(BIGNUM *out, BIGNUM *in,
2: RSA *key)
3: { /* Initialization code */
4: if ((len = RSA private decrypt(ilen, inbuf, outbuf,
5: key, RSA PKCS1 PADDING)) <= 0) {
6: error("rsa private decrypt() failed");
7: } else {
8: BN bin2bn(outbuf, len, out);
9: }
10: /* Delete buffers */
11: Declassify(out,high);
12: return len;
13: }

Figure 12. SSH Decryption

The result is a method-based downgrading policy that states
which data will be declassified when passed as argument to the
method. This principle is related to the downgrading policies of Li
and Zdancewic [13], where data is labeled with policies that declare
the operations that allow the data to be declassified. For example, a
data policy label may state that the data may be declassified if it is
passed to the hash function.

For a concrete example, consider the rsa private decrypt
method in figure 12 that decrypts in and places the result at out,
which is declassified according to the “safety” of the RSA al-
gorithm not revealing information about the private key. The re-
sulting method-based policy is that rsa private decrypt re-
moves the label high from the output of the method, out. An
equivalent data label policy could be placed on the private key
data at the input point, allowing the data to be declassified by the
rsa private decrypt method. Thus, the private key would carry
the downgrading policy.

The result is the same in either case, and the output from
rsa private decrypt will be declassified. The principle behind
the similarity is that a safe declassification is a pair consisting of
the kind of data, and a function or method on that data; the ap-
proach in [13] places the policy on the data, and we place it on the
method. From a software engineering perspective, we argue that
placing downgrading policies on methods is preferable, since it can
be clearly shown in the API for each method, creating a more ob-
servable downgrading policy. Data on the other hand gets buried
within the code, resulting in buried downgrading policies if the data
contains the policies. In addition, the accuracy of declassification is
tightly coupled with the method implementation. A change to the
method may result in a leak and an unsafe declassification. Poli-
cies on data may not be aware of such changes, resulting in failure
of the security system. Consider a different implementation of the
rsa private decrypt in figure 13. The highlighted code at line
6 outputs the private key in the case where the decryption failed,
leading to a breach of security and an unsafe declassification. If
the policies are carried on the data, there is less chance that such
a glaring mistake will be caught. By placing downgrading policies
on the methods, the programmer is able to inspect the code for
correctness of the policy.

1: int rsa private decrypt(BIGNUM *out, BIGNUM *in,
2: RSA *key)
3: { /* Initialization code */
4: if ((len = RSA private decrypt(ilen, inbuf, outbuf,
5: key, RSA PKCS1 PADDING)) <= 0) {
6: out = key->rsa->d;
7: } else {
8: BN bin2bn(outbuf, len, out);
9: }
10: /* Delete buffers */
11: Declassify(out,high);
12: return len;
13: }

Figure 13. SSH Decryption with Security Hole

Principle: Declassification points should declassify a minimal
number of sources, and nearest to the point where the data first
becomes watered-down enough to warrant declassification. This
will protect against inadvertent declassifications of information,
e.g. if a high label comes from two different sources and declas-
sification occurs late, the programmer may miss that one of the
values actually is not safe to be declassified. For example, in the
rsa private decrypt in figure 12, the output of the method is
declassified, as the programmer determines that this method leaks

1: static int try rhosts rsa authentication(
2: const char *local user, Key * host key)
3: {
4: /* Send public key to server for authentication. */
5: type = highRead(); /* Server’s response, a challenge. */
6: respond to rsa challenge(challenge, host key->rsa);
7: BN clear free(challenge); /* Delete challenge. */
8: type = highRead(); /* Server Response */
9: if (type == SSH SMSG SUCCESS) { return 1; }
10: return 0;
11: }
12:

13: void ssh userauth1(const char *local user, const char
14: *server user, char *host, Sensitive *sensitive)
15: {
16: /* Send username *local user to server */
17: type = lowRead();
18: /* Same code as in figure 7 */
19: }
20:

21: int highRead() {
22: return packet read();
23: }
24: int lowRead() {
25: return packet read();
26: }

Figure 14. SSH High and Low Input Channels

a “safe” amount of information. A declassification of this flow that
occurs later in the program is poor design, since it occurs far from
the point at which the leak is considered “safe.”

Violations of the first principle can be captured by an informa-
tion flow analysis, although it is up to the programmer to deter-
mine the proper downgrading policies. The second principle can
be enforced by using information flow controls to show how many
high security inputs flow into a declassification point. Warnings can
be raised so programmers can check this for accuracy. Similarly, a
backward slice from a declassification point will show the high in-
puts that flow to the point, providing another accuracy check.

4.3 Input and Output Channels
Unfortunately, most programs use very few different channels for
IO operations, and this sometimes makes it difficult to distinguish
between a high channel and a low channel. A good example is
the socket connections in the OpenSSH example of section 3.
The statement type = packet read() inputs a packet from the
socket connection to the server. This occurs in the low component
at line 30 of figure 7, where the client is reading the server’s
response to the username that was just sent. The same statement
is used in the high component at line 30 in figure 6 (this code was
refactored, but not duplicated in figure 8). This is a reply to the
challenge that is decrypted using a private key, leaking a small
amount of information. This creates confusion in defining high
security output channels, as the underlying connection is the same.

We solve this problem by creating separate high and low chan-
nel abstractions, which use the same underlying socket. This results
in a clearer design of the program in an abstract sense, as the pro-
gram can now distinguish between channels.

In figure 14, we show a portion of refactored code that separates
the high and low input channels. In the high component, input calls
try rhosts rsa authentication are replaced by highRead().
In the low component, input calls are replaced by lowRead() in the
ssh userauth1 method. We also note that packets are read in the
same manner once the client loop has started.

Separation of high and low output channels is similar, although
a declassification may be necessary for the underlying channel. As-
suming the underlying channel is low, data from the high compo-
nent must be declassified before being sent. In SSH, data is placed
in packets via packet put commands, which serve as the under-
lying channel. Since the underlying channel is low, a high output
channel can be defined as follows.

high packet put char(c) {
packet put char(Declassify(c));

}

This method should then be used in the high component wher-
ever a high output is desired.

Channel separation provides a better abstract model of the secu-
rity policy of the program; however, security holes may still arise
due to declassifications of high data on the channel. Control of
channel separation necessitates the use of temporal properties to
specify when the channel is high and low, and that accesses to the
channel are correct. For example, in SSH once the authentication
phase is over, high data should not be sent over the socket connec-
tion. A flow-sensitive analysis is needed to control temporal prop-
erties of shared channels.

Debug channels and log files are common sources of security
leaks, as they are usually less heavily scrutinized than other code.
Refactored programs must separate such channels so that debug
information does not end up in an insecure file location. A high
slice will show if information is leaking from the high component
into a low debug channel, which can be fixed during refactoring.

5. Related Work
As stated in the introduction, other researchers have observed that
programs may be refactored into high and low security parts. Li
and Zdancewic [13] mention this as an avenue for proving nonin-
terference, and additionally note that their relaxed noninterference
can be formalized by allowing some functions to depend on high
inputs, which are treated as downgrading policies.

Amtoft and Banerjee [2] make a similar observation, along with
showing how forward slicing can help. They show how slicing can
be used to eliminate all assignments that depend on a high variable
h, as well as all conditionals and loops with tests that depend on h.
The result is a program where every high command is replaced by
skip. Refactoring of the high security code is not discussed, and
most of the issues addressed in this paper do not arise, since the
language they use is small.

Privilege separation involves partitioning a program into two
separate processes: a privileged monitor that executes any priv-
ileged operations and an unprivileged slave that does the rest.
The goal is to reduce the amount of code that runs in privileged
mode, reducing the likelihood of attackers gaining superuser ac-
cess. Provos et al. gave a manually privilege-separated version
of OpenSSH [18]. Brumley and Song developed Privtrans [5], an
automated program for privilege separation. They use a static data-
flow analysis to discover which function calls should be executed
by the privileged monitor, then transform the source code by rewrit-
ing these calls with wrapper functions. This analysis only accounts
for direct flows, where privileged data is directly passed to a func-
tion, or assigned to a variable. Our approach aims to also account
for indirect flows, to produce a stronger information flow secu-
rity guarantee. Their design focuses solely on process separation,
whereas we actually move code to separate components. This act
of physically separating the components makes the security policy
more clear which will increase reliability.

Program slicing was first addressed by Weiser [29], and has
been an active area of research for many years; see [25] for an
overview. Secure information flow has been around even longer,
beginning with early work by Bell and LaPadula [4] and Denning
[7]; this area has also been a well-studied research topic [20].
However, it has not been until fairly recently that the commonalities
between the two schools have been examined.

Abadi et al. defined the Dependency Core Calculus (DCC) [1],
and showed how the SLam calculus [12], a typed lambda calculus
with information flow annotations, and a slicing calculus could both
be encoded in DCC. This allows noninterference to be applied to
program slicing, although they use a type system for computing
slices as opposed to the usual dependency graph approach.

Snelting et al. showed how backward slices satisfy a nonin-
terference criterion [22]. This differs from Abadi et al. [1], since
they assume slices are computed using a system dependence graph
(SDG); noninterference is shown for the Goguen and Meseguer
definition [9]. They later describe how to use path conditions in
program dependence graphs (PDGs) for information flow control
[11]. The slicing approach has an advantage over the type-based
approach of being flow-sensitive, but it is less rigorously defined
than a type-based approach.

None of the above works discuss the benefits and challenges
of refactoring programs for information flow security purposes.
Similarly, refactoring and restructuring techniques have been well-
studied [14], yet the emphasis is not on information flow security.
Rather, refactoring generally emphasizes design issues, such as
version compatibility, reducing redundancies, etc. The idea of using
program slices to guide refactorings has popped up before [27], but
not in an information flow context.

References
[1] Martı́n Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke.

A core calculus of dependency. In POPL ’99: Proceedings of the 26th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 147–160, New York, NY, USA, 1999. ACM Press.

[2] Torben Amtoft and Anindya Banerjee. A logic for information flow
analysis with an application to forward slicing of simple imperative
programs. Science of Computer Programming. To appear.

[3] Anindya Banerjee and David Naumann. Using access control for
secure information flow in a java-like language. In Proc. IEEE
Computer Security Foundations Workshop (CSFW), pages 155–169.
IEEE Computer Society Press, 2003., 2003.

[4] David E. Bell and Leonard J. LaPadula. Secure computer system:
Unified exposition and multics interpretation. Technical Report
MTR-2997, The MITRE Corporation, Bedford, MA, 1975.

[5] David Brumley and Dawn Song. Privtrans: Automatically partitioning
programs for privilege separation. In Proceedings of the 13th USENIX
Security Symposium, August 2004.

[6] Frank W. Calliss. Problems with automatic restructurers. SIGPLAN
Notices, 23(3):13–21, 1988.

[7] Dorothy E. Denning. A lattice model of secure information flow.
Commun. ACM, 19(5):236–243, 1976.

[8] Mike Downen. Find out what’s new with code access security in
the .net framework 2.0. http://msdn.microsoft.com/msdnmag/
issues/05/11/CodeAccessSecurity/, November 2005.

[9] Joseph A. Goguen and José Meseguer. Security policies and security
models. In IEEE Symposium on Security and Privacy, pages 11–20,
1982.

[10] GrammaTech, Inc. Codesurfer. http://www.grammatech.com/
products/codesurfer/index.html.

[11] Christian Hammer, Jens Krinke, and Gregor Snelting. Information
flow control for java based on path conditions in dependence graphs.

In IEEE International Symposium on Secure Software Engineering,
2006.

[12] Nevin Heintze and Jon G. Riecke. The SLam calculus: Programming
with secrecy and integrity. In Proceedings of the 25th ACM
Symposium on Principles of Programming Languages, pages 365–
377, Jan. 1998.

[13] Peng Li and Steve Zdancewic. Downgrading policies and relaxed
noninterference. In POPL ’05: Proceedings of the 32nd ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 158–170, New York, NY, USA, 2005. ACM Press.

[14] Tom Mens and Tom Tourwé. A survey of software refactoring. IEEE
Transactions on Software Engineering, 30(2):126–139, February
2004.

[15] Andrew C. Myers. JFlow: Practical mostly-static information flow
control. In Symposium on Principles of Programming Languages,
pages 228–241, 1999.

[16] Andrew C. Myers and Barbara Liskov. A decentralized model for
information flow control. In Symposium on Operating Systems
Principles, pages 129–142, 1997.

[17] Franois Pottier and Vincent Simonet. Information flow inference
for ML. In Proceedings of the 29th ACM Symposium on Principles
of Programming Languages (POPL’02), pages 319–330, Portland,
Oregon, January 2002.

[18] Niels Provos, Markus Friedl, and Peter Honeyman. Preventing priv-
ilege escalation. In 12th USENIX Security Symposium, Washington,
DC, August 2003.

[19] Venkatesh Prasad Ranganath, Torben Amtoft, Anindya Banerjee,
Matthew B. Dwyer, and John Hatcliff. Indus. http://indus.
projects.cis.ksu.edu/.

[20] Andrei Sabelfeld and Andrew C. Myers. Language-based
information-flow security. IEEE Jounal on Selected Areas in Com-
munications, 21(1), January 2003.

[21] Scott F. Smith and Mark Thober. Securing data at Java IO boundaries.
http://www.cs.jhu.edu/~mthober/securingdata06.pdf.
Draft.

[22] Gregor Snelting, Torsten Robschink, and Jens Krinke. Efficient path
conditions in dependence graphs for software safety analysis. ACM
Transactions on Software Engineering and Methodology. To appear.

[23] Sun Microsystems, Inc. Security code guidelines. http://java.
sun.com/security/seccodeguide.html, February 2000.

[24] Clemens Szyperski. Component Software: Beyond Object-Oriented
Programming. Addison-Wesley, January 1998.

[25] Frank Tip. A survey of program slicing techniques. Journal of
programming languages, 3:121–189, 1995.

[26] Lance Tokuda and Don Batory. Evolving object-oriented designs
with refactorings. Automated Software Eng., 8(1):89–120, 2001.

[27] Mathieu Verbaere. Program slicing for refactoring, 2003. MSc thesis,
University of Oxford.

[28] Dennis M. Volpano and Geoffrey Smith. A type-based approach to
program security. In TAPSOFT, pages 607–621, 1997.

[29] Mark Weiser. Program slicing. IEEE Trans. Softw. Eng., 10(4):352–
357, July 1984.

[30] Tatu Ylonen. Ssh client program, 1995.
[31] Tatu Ylonen. Ssh manpage, Nov. 8 1995.

