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Abstract

We present an information flow type system for Feath-
erweight Java, taking a programmer-centered view by re-
quiring minimal program annotations, and focusing on IO
points, the most critical flow boundary. Our static type in-
ference system automatically infers information flow labels,
thus eliminating the need for explicit program annotations.
We prove type soundness and a noninterference property
using an extensible operational approach. On top of this
system, we provide an analysis that extracts all information
flowing in and out of the IO points of a program. Global
program flows can then be observed, and policies can be
set to control these flows. We argue that controlling data at
input and output points is ultimately the only data security
borders that matter, and our system allows programmers to
focus on this dimension.

1. Introduction

Effective tracking of information in programs begins
and ends at the program’s runtime data boundaries, the IO
points. If secret data appears to be abused in a program,
yet the program generates no observable output, by defini-
tion no secrets are lost. For this reason, we focus here on
making IO points the center of information flow policy dec-
larations, since that is the only place in the end that a policy
is needed. We believe bringing the issue of IO to the center
of information flow research will lead to systems that work
better in practice.

Existing work on information flow [4, 12, 24, 19, 31]
shows how type systems can be defined that statically guar-
antee that high security data will not affect low security
data. Anoninterference[11] property is usually shown for
well-typed programs: low security outputs are not affected
by any high security inputs. While the foundations of in-
formation flow are solid, existing information flow systems
have several usability problems. The overhead for adding
information flow security to programs is potentially large,

since existing systems usually require that security annota-
tions be added to the code, making the coding process more
time consuming. With large numbers of annotations, the
likelihood of having incorrect annotations also increases: a
mistake can get lost in the noise of so many annotations.

Instead of focusing on securing the boundaries, most cur-
rent systems focus on internal control, by placing static la-
bels on memory locations. For example, the variableh may
have the labelhigh, while the variablel may have the label
low. A type system then ensures that the value of a lower
level variable is not influenced in any way by the value of
a higher level variable. While this is an effective means to
control information flow, it does not make clear what the
top-level policy being enforced is: the flow policy is buried
in the variable declarations.

Our primary goal is to provide practical data secrecy
and integrity protection to aid programmers in securing pro-
grams they write. In particular, we focus on input and out-
put points asthe important boundaries for securing data.
Thus, our focus is on controlling information flows upon
entry and exit from a program, and not unnecessarily con-
trolling flows internally. Additionally, we do not want to
require significant new syntax or require any program an-
notations, in order to ease the necessary overhead for pro-
grammers. In general, we should speak of securing thecom-
ponent interface[30] of software, since some runtimes are
composed of multiple independent components with dis-
tinct security policies; here we focus on IO for simplicity.

Our approach associates all program values with flow la-
bels. Labels are explicitly placed on input data and checked
at output points; for points in between, the type system can
automatically infer the labels and so programmers do not
need to add declarations.

We provide program constructsLabel(e,L) to explic-
itly label data andForbid(e,L) and Ensure(e,L) to
check data secrecy and integrity, respectively; we addition-
ally allow the ability to downgrade (declassify) labels when
deemed safe to do so. We prove a type soundness result,
and a noninterference property.

One weakness of Java (along with many other languages)



is how the IO points get buried in the code through sub-
classing, method calls,etc.. This in turn makes it diffi-
cult to observe where the actual IO is occurring without
digging through the whole program. This lack of a clear
top-level IO interface means anyone who wants to under-
stand the information flow properties of a whole program
must have intimate knowledge of the code in order to un-
derstand what information flows occur through IO. To help
programmers obtain a top-level picture of the IO and thus
the information flow of a program, we provide a simple tool
that extracts program input and output points along with the
corresponding information flows at these points. With this
tool, programmers can observeall input and output points
in a program, along with what information flows through
these points. This can then be used to set policies for these
points, or as a way of double-checking the accuracy of the
program’s information flow security controls. A more ele-
gant solution would be a language design that focuses more
explicitly on the runtime interface of code; some language
designs have begun to address this topic,e.g. [18]. Rather
than proposing a new language here, however, we show how
it is not difficult to derive this interface, obtaining a work-
able solution without need for language redesign.

The rest of this paper is organized as follows. Section 2 is
a high-level overview of our system. Section 3 describes in
more detail how our system can be used to control informa-
tion flows at IO points, via an example program. Section 4
presents the EFL language, our extension of Featherweight
Java [13], and our label type system for typing information
flows. Section 4.3 presents the small-step operational se-
mantics for our system and soundness and noninterference
results. Our IO extraction tool is detailed in Section 5, and
we show how to create policies for enforcing secrecy and
integrity properties in section 5.3. We then discuss related
work in section 6.

2. System Overview

Our syntax is based on Featherweight Java [13], ex-
tended with labeling, checking, and declassifying syntax as
well as other minor additions. Labels are placed on data
with the statementLabel(e,L), which labels an expres-
sione with label setL. We track sets of labels as opposed to
defining a security lattice [6, 10]. Information flows may be
controlled by check statements, which ensure that the labels
inferred for a particular value satisfy the secrecy or integrity
property as defined by the check statement. These checks
allow programmers to create well-defined security bound-
aries, and the flexibility to only check the labels that are
really important for a particular piece of code. For secrecy,
we useForbid checks as in the following example

int f (int x) {return Forbid(x,{high});}
Now, any applicationf(h), where data flowing intoh has

the labelhigh will cause a type failure since the check
forbids data labeledhigh from passing through the check
statement. These statements accommodate IO security,
where data is labeled upon input, and checked immediately
before output.

We can also enforce integrity properties using a check,
Ensure(e,L), which requires the expressione to carry all
of the labels in the setL. For example, consider a program
that changes a user’s password. Integrity checks can be
placed on the password output channel to ensure low secu-
rity data does not flow into the system password file. While
most research correctly states that integrity is a dual to se-
crecy [7], there are subtle differences [14, 16], and for this
reason we model both secrecy and integrity in detail.

We additionally provide aDeclassify(e,L) statement,
which removes secrecy labelsL from e. This serves to de-
classify data in infrequent, explicitly allowable instances
[21, 34]. For example, in a program where a password is
being checked, the result of a password comparison may be
declassified, so the resulting boolean will not carry the high
security label of the password. Programmers must be very
careful when using declassify operations, which may reveal
too much information and compromise security.

We define a static constraint-based type inference sys-
tem, with a form of automatic label polymorphism infer-
ence that is related to 1CFA [27], and related concrete class
analyses [3, 28, 33]. The need for label polymorphism in-
ferences will become evident when we study the example
program of Section 3.

2.1. Information Flow Analysis for IO

Regardless of program internals, data is only truly com-
promised during input or output, whether writing to a file,
sending information over a socket connection, or reading
user input from the keyboard. For this reason, we are fo-
cusing on the IO points. We define an IO point extraction
analysis in section 5. This analysis extractseveryinput and
output point in a program along with the respective infor-
mation flow details. Figure 1 shows the general form of
such an extraction. Input operations are shown with the la-
bels placed on the input data. Output operations are shown
with the labels on the data being output, the checks on the
data, and any declassifications which have occurred on data
flowing to the output point. We extract the declassifications
because of their potentially hazardous nature. This analysis
gives programmers a top-level view of the program infor-
mation flow, allowing them to produce the proper security
policies or double check the program for accuracy.

Beyond extracting the global information flow, it is use-
ful to be able to write theentire information flow policy,
independentof the program. We describe such a system
in Section 5.3. These policies automatically insert the ap-
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Figure 1. Information Flow Analysis for IO

propriate information flow statements into regular Java pro-
grams. This allows programmers to specify information
flow policies at the top level, without altering program in-
ternals.

2.2. Program Constants

The use of security-critical constants in a program can
create security holes: hard-coded secret data may be misla-
beled and leak out of a program through output operations,
or by an unauthorized agent reading the source code itself.
Similarly, program constants may adversely affect data in-
tegrity, e.g. if a rogue string constant is inadvertently writ-
ten as a user’s password. Remarkably, programmers con-
tinue to make such mistakes, even in recent commercially
available programs and devices [25, 2, 9], where hard-coded
passwords resulted in security problems. This underscores
the dangers of hard-coding data and the need for tools to
help programmers avoid such mistakes.

We take the approach that hard-coding of secret data or
low-integrity data simply should not happen: the only rea-
sonable way to view program constants are as low secrecy
but high integrity data, and this is how our type system treats
all constants. Since abuse of constants is potentially a pro-
gramming pitfall, it is useful to also point out to program-
mers the constants involved in various outputs, so they can
verify they are low secrecy, high integrity data. An analy-
sis producing all such constants is easily defined by treating
program constants as a special form of input channel; since
it is straightforward we do not define the actual algorithm.

3. An Example of IO-based Information Flow

In this section we elaborate on how information flow is
controlled at IO points in our system, by the study of a sim-
ple example. IO channels in Java are created through sub-
classing, as inFileInputStream, DataOutputStream,
SocketInputStream, etc. We build on this principle, and
define different information flow policies using different

subclasses of these IO classes. For each distinct security
category of IO, a different subclass is created. This 1-1
relationship between class definitions and security policies
makes for an “object oriented” approach to information flow
policies, harmonizing with the existing language structures.

We now focus on an example program for changing pass-
words, where data security is important in both secrecy and
integrity dimensions. Firstly, we want to provide secrecy
for the user name and password information contained on
the system, making sure this information is not leaked to a
public channel, i.e. the screen. Secondly, we want to ensure
the integrity of the system password file by not allowing it
to be tainted by improper data, thereby altering user names
and passwords on the system. These are two well-defined
goals for a programmer of a password changing application.

We take some liberties with syntax that is not de-
scribed in our calculus, such as the use of local variables,
super(), and awhile loop. We make some abbrevia-
tions to shorten the presentation,IS for InputStream, OS
for OutputStream, PS for PrintStream. B abbreviates
Buffer, soBR is BufferedReader. Other obvious abbre-
viations have been made, and some code is omitted for lack
of space.

The first segment of code defines thePwdFile class,
which has fields for the password file name and a tempo-
rary file name. The primary method here isChangePwd,
which changes the password of a user in the password file.
The second segment of code defines some input and output
streams for this program. The input streams label data from
the system or the user accordingly. Similarly, the output
streams check to make sure sensitive data is not output to
the screen, and that low integrity data is not output to the
password file. The final segment is themain method that
takes user input to change a password and outputs whether
the password change succeeded or not.

class PwdFile extends Object {
String fileName; String tempName;

Reader getPwdReader() {
SysFileIS fin = new SysFileIS(fileName);

return new BR(new ISReader(fin)); }

Writer getWriter() {
PwdFileOS fout = new PwdFileOS(tempName);

return new PrintWriter(fout); }

bool isUser(String line, uname, oldpwd) {
// parseline and return true ifuname andoldpwd match
}

bool ChangePwd(String uname,oldpwd,newpwd){
bool succ = false; String line;

BR passIn = getPwdReader();

PrintWriter tempOut = getWriter();

while((line = passIn.readLine()) != null) {
if (isUser(line,uname,oldpwd)) {
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tempOut.println(uname + ":" + newpwd);

succ = true;

} else { tempOut.println(line) }
}
// rename tempFile to fileName

return Declassify(succ,{Secret,Sys,User}); }
}

public class SysFileIS extends FileIS {
public int read() {
return Label(super.read(),{Secret,Sys}); }}

public class UserBIS extends BIS {
public int read() {
return Label(super.read(),{Secret,User});}}

public class PwdFileOS extends FileOS {
public void write(int v) {
Ensure(v,{Secret}); super.write(v); }}

public class ScreenPS extends PS {
public void println(String s) {
Forbid(s,{User,Sys,Secret});
super.println(s); }}

void main(){
String fileName = "/etc/passwd";

String tempName = "/tmp/tmppasswd";

PwdFile pf = new PwdFile(fileName,tempName);

//read uname,oldpwd,newpwd from a UserBIS.

ScreenPS screen = new ScreenPS(System.out);

bool succ = pf.ChangePwd(uname,oldpwd,newpwd);

if (succ) { screen.println("Success"); }
else { screen.println("Failure"); }
}

The modifications needed to support information flow
analysis here are minor. The most significant require-
ment is to define distinct subclasses ofInputStream and
OutputStream for each distinct IO policy. In this case we
are defining four new IO policies, in the classesSysFileIS
andUserBIS (for input), andPwdFileOS andScreenPS
(for output). In each case, theread or write method la-
bels (input) or checks (output) the appropriate information
flow. (Note that IO can occur with other methods such as
file rename, but we are simplifying a bit in this example).
There is also a declassification of labels at the end of the
ChangePwd method. Programs require no explicit paramet-
ric types, and no label type declarations on variables – both
type parametricity and variable information flow is auto-
matically inferred.

Note the password file and temporary password file-
names are hard-coded in the program. This does not violate
our assumption that secret data is not hard-coded in pro-
grams, as neither of these are secret. The constant extraction
algorithm we described in the previous section would still

extract these constants for inspection, to verify that indeed
they were not secret information.

Proper typing of this example imposes some require-
ments on the type system: the type of theread andwrite
methods simplycannotbe the same across all subclasses,
otherwise all of the work we made to separate the policies
in separate classes would be for nothing since their informa-
tion flow would all merge. So, a form of parametric poly-
morphism is needed to distinguish between subclasses. It
is even more subtle because a variable declared to be an
InputStream can at runtime be any of its subclasses such
asSysFileIS or UserBIS, and so it may look very diffi-
cult to type these methods distinctly. Our solution is to use
a polymorphic form of concrete class analysis [3]: we use a
constraint-based type system that specializes the type of an
object at each method call site for each different type of ob-
ject that it could be. This technique leads to a very accurate
typing [3, 33], and allows the methodology of placing dif-
ferent security policies in different subclasses to be sound
yet expressive.

To better illustrate the expressiveness of our polymor-
phic type system we show an alternate implementation of
the ChangePwd method, one that takes anInputStream
and OutputStream as arguments for reading from and
writing to the password file, respectively.

bool ChangePwd(IS in,OS out,String

uname,oldpwd,newpwd){
bool succ = false; String line;

BR passIn = new BR(new ISReader(in));

PrintWriter tempOut = new PrintWriter(out);

// . . . same code as above
}

The following code uses this new implementation.
TopFileOS is subclassed fromFileOS, and thewrite
method of the new class checks the output data for the in-
tegrity labelTopSecret. In themain portion, two different
calls are made toChangePwd, one with aPwdFileOS, as
before, and one to aTopFileOS.

public class TopFileOS extends FileOS {
public void write(int v) {
Ensure(v,{TopSecret}); super.write(v); }}

void main() {
// . . . same code as above

String ts = "/etc/topsecret";

SysFileIS in = new SysFileIS();

PwdFileOS pout = new PwdFileOS(tempName);

TopFileOS tout = new TopFileOS(ts);

pf.ChangePwd(in,pout,uname,oldpwd,newpwd);

pf.ChangePwd(in,tout,uname,oldpwd,newpwd);

}
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Our polymorphic type system is expressive enough to
support this newChangePwd method, with no annotations.
Additionally, since we are statically inferring the concrete
classes of objects, we can create different security poli-
cies for overriding methods, and the type system will know
the correct policy to use. In this example, the first call
to ChangePwd will type properly, but the second call will
cause a type error, since the data passed to thewrite
method of theTopFileOS is not labeled withTopSecret.
Note that this approach allows the use of behavioral subtyp-
ing [17], by adding flow restrictions in the subclasses, but
does not require it.

4. Types for Data Tracking and Checking

In this section, we present the formal type system, op-
erational semantics, and soundness properties. In order to
simplify the reasoning and presentation of the system, we
define alabel type inference systemsolely for typing data
flows, and use the existing FJ type system for normal FJ
typechecking not related to information flow. Our label type
system is strong enough to handle any valid FJ program, in-
cluding those with mutually recursive class definitions, and
method recursion. A program type checks if and only if it
type checks in both the FJ type system and the label type
system.

4.1. The Language

Our language is an extension of Featherweight Java (FJ)
[13]. FJ contains the basic object constructs of Java, and
is small enough to still allow formal properties to be estab-
lished. However, FJ does not contain primitive data types
or conditional statements, and these are critical to the study
of information flow. We thus add the following Java con-
structs:constants(int, bool, string), operators(+,-
etc.),conditionals, andsequencing. The grammar for our
Extended FJ (EFJ) language is given in Figure 2.

CL ::= class C extends C {C̄ f̄; K M̄} classes
K ::= C(C̄ f̄) {super(f̄); this.f̄ = f̄; } constructors
M ::= C m(C̄ x̄) {return e; } methods
L ::= {l̄},wherel are unique labels. labels
CO ::= c | b | s constants
e ::= x | CO | e.f | e.m(ē) | new C(ē) | expressions

if e then e else e | (C) e | e⊕ e |
e; e | Label(e, L) | Forbid(e, L) |
Ensure(e, L) | Declassify(e, L)

Figure 2. Grammar

To track data flows, we also add explicit constructs for

that purpose:Label(e,L), which labelse with label L;
Ensure(e,L), which ensures thate carries at least all of
the integrity labels in label setL; Forbid(e,L), which for-
bidse from carrying any of the secrecy labels in label setL;
andDeclassify(e,L), which removes the secrecy labels
in L from those one. We here omit the integrity dual of de-
classification,Endorse(e,L), which is a simple extension
that adds integrity labelsL to those one.

We assume some familiarity with FJ, and do not repro-
duce its typing or semantic definitions; see [13] for the de-
tails. The small-step operational semantics and type sound-
ness for EFJ are presented in section 4.3, following a dis-
cussion of the label type system. Note that EFJ follows FJ
and types expressions with respect to a global class table,
CT , that contains the types of all classes. At the top level
an expressione corresponding to themain method is type-
checked with respect to this table.

In FJ type assertions are of the formΓ `T e ∈ C, mean-
ing in environmentΓ, expressione has typeC. In addition to
the standard type rules for FJ, we add the type rules corre-
sponding to the EFJ extensions; they are mostly straightfor-
ward, and are omitted for lack of space. ForLabel(e, L),
Forbid(e, L), Ensure(e, L), and Declassify(e, L), the
resulting type of each expression is the same type ase, since
the value of each expression ise and the label tracking is
only handled in the label typing rules.

4.2. Label Types

EFJ values are either objects or primitive constants. Ob-
jects may be labeled, as may the internal fields of an ob-
ject. Thus, Label types,τ , are four-tuples〈 S, I,F ,A〉; S
is a set of secrecy labels for the current object,I is a set
of integrity labels for the object,F is a label record for the
internal fields of the object, andA is anα-type, a type rep-
resenting the concrete class of the object. The type notation
is summarized in Figure 3.

Each field of an object has its own labels,F , {f1 7→
τ1, . . . , fn 7→ τn}. The individual labels may be accessed
by a dot notation:F .f.S is the secrecy label on thef field
of the object. Primitive constants int/bool/string are labeled
as objects with no fields.

The α-types are used to express a form of parametric
polymorphism over the inheritance hierarchy, allowing the
superclass and subclass to differ in their labeling. With-
outα-types, we would lose a critical degree of expressive-
ness. For example, supposeSecretOutput is a subclass of
Output, where thewrite method ofSecretOutput con-
tains a check, and thewrite method ofOutput does not.
It is imperative to statically distinguishSecretOutput ob-
jects fromOutput objects. The usual Java type declaration
is insufficient for determining the class of an object, as it
may be an object of a subclass, which contains different
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τ ::= 〈 S, I,F ,A〉|t types
S ::= {l̄}|s|S ∪ S|S − S|F .f.S |∅ secrecy types
I ::= {l̄}|i|I ∩ I|F .f.I |∅ integrity types
F ::= {f̄ 7→ τ̄}|f |F .f.F |∅ field types
A ::= C|α|F .f.A alpha types
t ::= 〈 s, i, f, α 〉 type variables

κ ::= t̄, tt
sp,ip−−−→ tr\C method types

∀t̄′.t̄, tt
sp,ip−−−→ tr\C

c ::= S <: S|I <: I|F <: F constraints
|A <: A|FC(L,S)|EC(L, I)
|A.m(τ̄ , τt

pc,pci−−−−→ τr)
C ::= {c}|C ∪ C|∅ constraint sets
s, i, f, α, sp, ip variables
pc, pci program counters
u top integrity label

Figure 3. Notation

checks, or returns different labels. Consider the following
example:
void foo(Output out,int i) { out.write(i); }

Here the functionfoo takes anOutput object, and calls
the write method of the object with aString argument
s. Now, the objectout may actually be aSecretOutput
object, which performs a check on the data to be written.
For this example our type system gives a polymorphic type
to out, and this type is instantiated to a concrete class for
each call site of the method. Since our system instantiates
object types at each method call site, it is a form of 1CFA
analysis [27] and is also closely related to CPA [3, 28, 33].
This expressiveness ofα types allows programmers to de-
fine new security requirements on IO channels, and because
the parametric types are inferred, it requires no additional
overhead on the part of the programmer.

We usel to represent a concrete label, ands, i for label
variables in the secrecy and integrity domains, respectively.
Notation L refers to a set of concrete labels{l̄}, and la-
bel setsS, I may contain both concrete label sets and label
variables, the latter used when the concrete label is not yet
known. For example, when typing methods, the argument
labels are variables since the actual labels are not instanti-
ated until the method is invoked. Additionally,f is a field
variable referring to an abstract field, andF is either an ab-
stract or a concrete field mapping;α is a variable referring
to an unknown class, andA is either an abstract classα or
a concrete classC.

We implicitly work over a simple equational theory of
sets in typing and constraint closure. Concrete unions,
S ∪ S ′, whereS = {l̄} andS ′ = {l̄′} are considered
equivalent to the unioned set,S ∪ S ′ = {l̄, l̄′}. An analo-
gous equivalence holds forI ∪ I ′ whenI andI ′ are con-

crete label sets.S − S ′ is also equivalent to the obvious
set difference when both are concrete label sets. For field
access,{f̄ 7→ τ̄}.fi.S is equivalent toSi, wherefi 7→
〈 Si, Ii,Fi,Ai 〉. A similar equivalence analogously holds
for any{f̄ 7→ τ̄}.fi.I , {f̄ 7→ τ̄}.fi.F , or {f̄ 7→ τ̄}.fi.A.

We use a label table,LT , to keep track of the label types
of all classes when typing expressions. This is analogous
to the class tableCT of the FJ type system that keeps track
of all class types. However, since we are inferring label
types here, we must build up the label table while typing
the classes.

Label type rules are of the formΓ, pc, pci ` e : τ\C,
meaning in label environmentΓ, with program counterspc
andpci, expressione has label typeτ with constraint setC.
Γ binds variables to label types, soΓ(x) = τ . The variables
pc andpci are program counters that track implicit flows
through programs and are a standard feature of information
flow type systems.

The constraint set,C, contains normal subtyping con-
straints<: for secrecy, integrity, field, andα types. In
addition, check constraints of the formFC(L,S), and
EC(L, I), for Forbid and Ensure checks, respectively, are
placed inC and the closure process will need to verify their
correctness. Method constraintsA.m(τ̄ , τt

pc,pci−−−−→ τr) con-
tain the necessary information to tie up method invocations
with the labels of the resulting method call. Methods in the

label table are universally quantified,∀t̄′.t̄, tt
sp,ip−−−→ tr\C

so they may vary parametrically. For each method invo-
cation, the type variables are separately instantiated in the
constraint closure; this ensures that labels do not pollute in-
dependent method calls.

We discuss the typing of expressions in section 4.2.1 fol-
lowed by details of the constraint closure in section 4.2.2
and inconsistencies in section 4.2.3.

4.2.1. Expression Typing

The Label type inference rules for expressions are given
in Figure 4. Label type rules for methods, classes, and
whole programs are given in figure 5.

Here are a few highlights of the rules. (Const) types con-
stants as label types containing onlypc for secrecy, andpci
for integrity, reflecting our view that constants should by
default have no secrecy and full integrity as discussed in
section 2.2.

The type of an object field access is the type of the field
within the object, along with the labels the object itself car-
ries (Field). For example, ifo has type〈 Sec, Sec, {f1 7→
〈 User, User, ∅, α1 〉; f2 7→ 〈 Pwd, Pwd, ∅, α2 〉}, α 〉 then
o.f1 has type〈 {Sec, User}, ∅, ∅, α1 〉, that is, the labels on
the objecto, and the label on the fieldf1.

In (Invoke), the constraintA.m(τ̄ , τt
pc,pci−−−−→ τr) is added

to the constraint set. The method type eventually needs to
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Γ(x) = 〈 s, i, f, α 〉
Γ, pc, pci ` x : 〈 s ∪ pc, i ∩ pci, f, α 〉\∅

(Var)
Γ, pc, pci ` c : 〈 pc, pci, ∅, int 〉\∅

(Const)

Γ, pc, pci ` e : 〈 S, I,F ,A〉\C
Γ, pc, pci ` e.f : 〈 S ∪ F .f.S , I ∩ F .f.I ,F .f.F ,F .f.A 〉\C

(Field)

Γ, pc, pci ` e : τ = 〈 S, I,F ,A〉\C Γ, pc, pci ` ē : τ̄\C̄
tr = 〈 s, i, f, α 〉 s, i, f, α are fresh variables

Γ, pc, pci ` e.m(e) : 〈 S ∪ s, I ∩ i, f, α 〉\C ∪ C̄ ∪ {A.m(τ̄ , τ
pc,pci−−−−→ tr)}

(Invoke)

Γ, pc, pci ` ē : τ̄\C̄ fields(C) = C̄ f̄

Γ, pc, pci ` new C(ē) : 〈 pc, pci, {f̄ : τ̄}, C 〉\C̄
(New)

Γ, pc, pci ` e : 〈 S, I,F ,A〉\C
Γ, pc, pci ` (C) e : 〈 S, I,F ,A〉\C

(Cast)

Γ, pc, pci ` e : τ\C
Γ, pc, pci ` e′ : τ ′\C′

Γ, pc, pci ` e; e′ : τ ′\C ∪ C′
(Seq)

Γ, pc, pci ` e : 〈 S, I, ∅,A〉\C
Γ, pc, pci ` e′ : 〈 S ′, I ′, ∅,A′ 〉\C′

Γ, pc, pci ` e⊕ e′ : 〈 S ∪ S ′, I ∩ I ′, ∅, int 〉\C ∪ C′
(Op)

Γ, pc, pci ` e : 〈 S, I,F ,A〉\C Γ, pc ∪ S, pci ∩ I ` e′ : τ ′\C′
Γ, pc ∪ S, pci ∩ I ` e′′ : τ ′′\C′′ s, i, f, α are fresh variables

Γ, pc, pci ` if e then e′ else e′′ : 〈 s, i, f, α 〉\C ∪ C′ ∪ C′′ ∪ {τ ′ <: 〈 s, i, f, α 〉, τ ′′ <: 〈 s, i, f, α 〉}
(If)

Γ, pc, pci ` e : 〈 S, I,F ,A〉\C
Γ, pc, pci ` Label(e, L) : 〈 pc ∪ L, pci ∩ L,F ,A〉\C

(Label)
Γ, pc, pci ` e : τ = 〈 S, I,F ,A〉\C

Γ, pc, pci ` Forbid(e, L) : τ\C ∪ FC(L,S)
(Forbid)

Γ, pc, pci ` e : τ = 〈 S, I,F ,A〉\C
Γ, pc, pci ` Ensure(e, L) : τ\C ∪ EC(L, I)

(Ensure)

Γ, pc, pci ` e : 〈 S, I,F ,A〉\C
Γ, pc, pci ` Declassify(e, L) : 〈 pc ∪ (S − L), I,F ,A〉\C

(Declassify)

Figure 4. Label Type Rules for Expressions

be looked up in the global label tableLT . However, sinceA
may not be a concrete class we postpone this decision until
more information is known aboutA, at constraint closure.
The above type constraint records the method call informa-
tion so it can be propagated in the closure once the concrete
class ofA is known.

In (New), the names of the fields in the classC are looked
up usingfields. TheF element of the type contains all the
labels on the object fields. Theα-type is given the concrete
class name of the object being created.pc andpci are the
secrecy and integrity labels on the new object, respectively.
Like constants, objects are assumed to have no secrecy and
full integrity by default.

The expression Label(e,L) places L on both
the secrecy and integrity labels ofe via (Label).
Declassify(e,L) removesL from the secrecy labels
of e in (Declassify).

(Ensure) adds a constraintEC(L, I) to the constraint set;
similarly, (Forbid) adds a constraintFC(L,S). Since some
concrete labels are abstract variables during type inference,
these constraints serve as markers,and the actual checks will
be made during closure.

Type inference rules for typing programs, classes, and
methods are found in Figure 5. Programs are typed by typ-
ing each class definition, which types each method defini-
tion, which are in turn typed according to the expression
rules in Figure 4. Methods require the type variables to be
set in an initial label table in order to support recursive class
definitions and mutually recursive methods. Method typing
fills in the constraint types in the full label table, where the
return type of the method body flows into the return label
variable of the method.

4.2.2. Label Closure

The closure rules for label constraint sets are given in
Figure 6. The rules add new constraints based on transitiv-
ity, obvious set propagations, and field labels. The closure
rule (Method) is important for tying up the types of method
calls. As discussed above, method constraints are added
during method invocation, when the actual class of the ob-
ject on which the method is being called may be unknown.
Thus, for all constraintsC <: A, whereC is a concrete class,
the methodm is looked up inLT via mtype, which returns
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Initial Lable Table:

t̄, tt, tr, sp, ip consist of fresh variables.
Each use ofInitialMethod() creates distinct variables.

InitialMethod() = t̄, tt
sp,ip−−−→ tr\∅

κ̄i = InitialMethod()
InitialLT = LT [(C0, M̄0) : κ̄0, (C1, M̄1) : κ̄1, . . . ]

Method Typing:

C0 = class C extends D {C̄ f̄; K M̄} M = C m(C̄ x̄) {return e; } InitialLT (C0, M) : t̄, tt
sp,ip−−−→ tr\∅

Γ[x̄ : t̄, this : tt], sp, ip ` e : τ\C t̄′ = FreeTypeVar(t̄, tt
sp,ip−−−→ tr\C ∪ {τ <: tr})

InitialLT `M (C0, M) : ∀t̄′.t̄, tt
sp,ip−−−→ tr\C ∪ {τ <: tr}

Class Typing:
InitialLT `M (C0, M̄0) : κ̄0 InitialLT `M (C1, M̄1) : κ̄1 . . .

`C LT [(C0, M̄0) : κ̄0, (C1, M̄1) : κ̄1, . . . ]

Program Typing: `C LT [(C0, M̄0) : κ̄0, (C1, M̄1) : κ̄1, . . . ]
∅, u ` e : τ\C Closure(LT [(C0, M̄0) : κ̄0, (C1, M̄1) : κ̄1, . . . ], C) is consistent

`P {C0, C1, . . . }; e : τ\C
Fields:

fields(Object) = ∅ fields(constants) = ∅
CT (C) = class C extends D {C̄ f̄; K M̄} fields(D) = D̄ ḡ

fields(C) = D̄ ḡ, C̄ f̄

Figure 5. Continuation of Label Type Rules

a typing for that method as found either inC or in a super-
class if not defined inC. We then substitute the labels in
themethodconstraint into this constraint set from the label
table, and replace all local label variables with fresh ones.
This allows us to add the constraints from the method being
called, without mixing any labels from two separate calls to
the same method.

We define a constraint closure as follows.

Definition 4.1 (Constraint Closure) Closure(LT, C) is
the least set that includesC and any constraint that can
be derived fromC by the rules of figure 6, and with the
additional constraint that the (Method) rule is only applied
once in the closure for each unique set of premises.

If we did not constrain (Method) rule as above, it could
be applied arbitrarily many times, generating different fresh
variables each time.

4.2.3. Inconsistencies

Inconsistencies in the label constraint sets come from
EC andFC constraints. Constraint consistency is defined
as follows.

Definition 4.2 (Inconsistent Constraints) An inconsistent
constraint is any constraintFC(L, L′), where∃l ∈ L′ such
thatl ∈ L; or any constraintEC(L, L′), whereL 6⊆ L′

If Closure(LT, C) contains an inconsistent constraint,
then the closure is inconsistent, and type inference fails.

Forbid checks are enforced byFC constraints.
FC(L, L′) is consistent if∀l ∈ L′, l /∈ L. Thus, the sets
L andL′ should have no labels in common. For example,
the constraintFC({Secret}, Public) is consistent, while
FC({Secret, TopSecret}, Secret) is not.

Ensure checks are enforced byEC constraints.
EC(L, L′) is consistent ifL ⊆ L′. The setL are the labels we
are requiring, andL′ are the labels on the data, as inferred by
the type system. Thus, we are enforcing that the labels re-
quired must be a subset of the labels on the data. For exam-
ple, EC({Secret}, {Secret, TopSecret}) is consistent,
since we are ensuring the label is at leastSecret.

4.3. Semantics and Soundness

We now present a small-step operational semantics for
our system. Figure 7 shows the necessary definitions for
the semantics. Values,v, are constants or objects. We prop-
agate label sets explicitly in the operational semantics; it al-
lows us to show noninterference for the operational seman-
tics independent of types. We are also interested in run-
time information flow extensions of our system as future
work. Although run-time checks cannot capture all infor-
mation flows in the presence of state or concurrency, they
do narrow the flow.

A configurationJ e KSI consists of an expression with two
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S1 <: s S2 ∪ (s− S3) <: S4

S2 ∪ (S1 − S3) <: S4

(S-Trans)
S1 ∪ S2 <: S3

S1 <: S3 S2 <: S3

(S-Union)

I1 ∩ I2 <: I3

I1 <: I3 I2 <: I3

(I-Intersect)
I1 <: i i ∩ I2 <: I3

I1 ∩ I2 <: I3

(I-Trans)
F1 <: f f <: F2

F1 <: F2

(F-Trans)

F <: f F containsf
S1 ∪ (f.f.S − S2) <: S3

S1 ∪ (F .f.S − S2) <: S3

(S-Field)

F <: f F containsf
I1 ∩ f.f.I <: I2

I1 ∩ F .f.I <: I2

(I-Field)

F <: f F containsf
f.f.F <: F1

F .f.F <: F1

(F-Field)

F <: f f.f.A <: A1 F containsf

F .f.A <: A1

(A-Field)
A1 <: α α <: A2

A1 <: A2

(A-Trans)

C <: A A.m(τ̄ , τt
pc,pci−−−−→ τr) mtype(C, m) = ∀t̄′.t̄, tt

sp,ip−−−→ tr\C t̄′′ consist of fresh type variables

[t̄′ 7→ t̄′′][sp 7→ pc, ip 7→ pci, t̄ 7→ τ̄ , tt 7→ τt, tr 7→ τr]C
(Method)

FC(L, (s ∪ S2)− S3) S1 <: s
FC(L, (S1 ∪ S2)− S3)

(FC-Trans)
EC(L, I2 ∩ i) I1 <: i

EC(L, I2 ∩ I1)
(EC-Trans)

F <: f F containsf
FC(L, (S ∪ f.f.S )− S ′)
FC(L, (S ∪ F .f.S )− S ′)

(FC-Field)

F <: f F containsf
EC(L, I ∩ f.f.I )
EC(L, I ∩ F .f.I )

(EC-Field)

LT (C, m) = ∀t̄′.t̄, tt
sp,ip−−−→ tr\C

mtype(C, m) = ∀t̄′.t̄, tt
sp,ip−−−→ tr\C

CT (C) = class C extends D {C̄ f̄; K M̄} m is not defined in̄M

mtype(C, m) = mtype(D, m)

Figure 6. Label Closure Rules

label setsS and I , for secrecy and integrity, respectively.
Labels in the label sets may appear due to direct or indirect
flows. Final configurations,L v MSI , are values with an asso-
ciated label set, orCkFail , denoting a failed label check.

Small-step reduction rules define the single-step reduc-
tion relationE → E ′, whereE andE ′ are configurations.
We omit several of the more obvious rules for brevity; these
include reductions that take any configuration containing
CkFail to a final configuration ofCkFail . Subterm compu-
tation rules push in a configuration to where the next com-
putation will occur. This is necessary so the internal com-
putations will have the proper labels. For example, the sub-
term computation rule for fields isJ e.f KSI → J J e KSI .f K

S
I .

Rules for reduction under context are omitted; one example
is assumingE → E ′, reduction under context for fields im-
pliesJ E .f KSI → J E ′.f KSI .

Figure 8 give the main reduction rules. Secrecy and in-
tegrity labels are passed through the program as is expected
based on the label type rules. (IfTrue-R) reduces atrue
conditional toe′, with S andI in the new configuration to
account for the indirect flow.fields(C) is as given in Fig-
ure 5. (Invoke-R) usesmbody (as in FJ[13]) to look up the
methodm in the class table.CkFail is produced for values
whose labels do not satisfy the check assertion.

4.3.1. Type Soundness and Noninterference

The type system along with our semantics allow us to
prove the standard subject reduction lemma and type sound-
ness results, whose proofs are omitted for brevity.

Since our operational semantics is based on configura-
tions, we must add type rules for typing configurations.
Since these rules are similar to the corresponding expres-
sion typing rules, we omit them here.

Initial typings and semantic reductions must start with
the proper program counters. For secrecy, this is simply
the empty set. For integrity, we useu, the top integrity la-
bel. This ensures integrity labels will not be destroyed by
an empty program counter.

Lemma 4.3 (Subject Reduction)If Γ, ∅, u ` E : τ\C,
and Closure(LT, C) is consistent, andE → E ′, then
Γ, ∅, u ` E ′ : τ\C′, whereC′ ⊆ Closure(LT, C), and
Closure(LT, C′) is consistent.

Theorem 4.4 (Type Soundness)Assume a well-typed
class table,CT and a corresponding label table,LT . If
∅, u ` e : τ\C, and Closure(LT, C) is consistent, then
J e K∅u 6→ CkFail .

The following Theorem 4.5 and Theorem 4.7 are state-
ments of secrecy noninterference. These results are stated
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J new C(V̄) KSI → L new C(V̄) MSI
(New-R)

fields(C) = C̄ f̄ Vi = L v MSiIi

J L new C(V̄) MSvIv
.fi

S
I K→ L v MSv∪S∪Si

Iv∩I∩Ii

(Field-R)

J c KSI → L c MSI
(Const-R)

mbody(m, C) = (x̄, e0)

J L new C(V̄) MSvIv
.m(V̄a) KSI → L J [x̄ 7→ V̄a, this 7→ L new C(V̄) MSvIv

]e0 KSI M
Sv
Iv

(Invoke-R)

v = c⊕ c′

J L c MScIc
⊕ L c′ MS

′
c

I ′c
KSI → L v MSc∪S ′c∪S

Ic∩I ′c∩I

(Op-R)
C <: D

J (D) L new C(V̄) MSvIv
KSI → L new C(V̄) MSv∪S

Iv∩I

(Cast-R)

J if L True MSvIv
then e′ else e′′ KSI → J e′ KSv∪S

Iv∩I

(IfTrue-R)
J L v MSvIv

; L v′ MS
′
v

I ′v
KSI → L v′ MS

′
v∪S

I ′v∩I

(Seq-R)

J Label(L v MSvIv
, L) KSI → L v MS∪LI∩L

(Label-R)
J Declassify(L v MSvIv

,L) KSI → L v M(Sv−L)∪S
Iv∩I

(Declassify-R)

∀l ∈ Sv ∪ S , l 6∈ L

J Forbid(L v MSvIv
, L) KSI → L v MSv∪S

Iv∪I

(Forbid-R)
L ⊆ Iv ∩ I

J Ensure(L v MSvIv
, L) KSI → L v MSv∪S

Iv∩I

(Ensure-R)

∃l ∈ Sv ∪ S , l ∈ L

J Forbid(L v MSvIv
, L) KSI → CkFail

(ForbidFail-R)
L 6⊆ Iv ∩ I

J Ensure(L v MSvIv
, L) KSI → CkFail

(EnsureFail-R)

L L v MSI M
S ′

I ′ → L v MS∪S ′

I∩I ′

(SubVal-R)
J L v MSI K

S ′

I ′ → L v MS∪S ′

I∩I ′

(SubVal-R’)

Figure 8. Operational Semantics Reduction Rules

Values: Labels:
v ::= CO | new C(V̄) S , I ::= {l̄},
Final Configurations: wherēl are unique label names
V ::= L v MSI | CkFail

Expressions:
The definition ofe remains the same except for the
addition ofV as a valid expression, which is necessary
for computation.

Configurations:
E ::= V | J e KSI | L E MSI | J E .f KSI | J new C(V̄, E , ē)S

I K |
J E .m(ē) KSI | J L new C(V̄),Sv, Iv M.m(V̄ ′, E , ē) KSI |
J if E then e′ else e′′ KSI | J E ; e KSI | JV; E KSI |
J E ⊕e′ KSI | JV ⊕E KSI | J (C) E KSI | J Label(E , L) KSI |
J Forbid(E , L) KSI | J Ensure(E , L) KSI |
J Declassify(E , L) KSI

Figure 7. Operational Semantics Definitions

for a single label,high, and are generalizable to any set of
labels. We leave off integrity labels, as they are inconse-
quential. We assume hereafter that there are no declassifi-
cation statements since they obviously violate noninterfer-
ence.

Theorem 4.5 (Semantic Noninterference)Given a well-
typed class table,CT , if J e KS →∗ L c MSc wherehigh 6∈
Sc, and for any L c1 MS1 in e where high ∈ S1, and

for any L c2 MS2 where high ∈ S2 and J [L c1 MS1 7→
L c2 MS2 ]e KS →∗ L c′ MS ′c wherehigh 6∈ S ′c, we must have
c == c′.

Our proof technique for semantic noninterference is sim-
ilar in spirit to the proofs in [23]; we show that thelow
reductions occur identically in both derivations, while the
high reductions may be different.

We define top-level secrecy types as follows in order to
more cleanly state our noninterference result. Top-level se-
crecy types are the concrete secrecy labels for an expression
as determined by the constraint set.

Definition 4.6 (Top-level Secrecy Types)If ∅, u ` e :
〈 S, I,F ,A〉\C, then for a fixed class tableCT , and fixed
label table,LT , ∅, u `Top e : 〈 ST , I,F ,A〉\C is a top-
level secrecy type, whereST is a set containing any con-
crete label,l, such that eitherl ∈ S, or there exists an
s ∈ S, such thatl <: s ∈ Closure(LT, C), or there exists
anf.f.S ∈ S, such thatl <: f.f.S ∈ Closure(LT, C).

We can then assert noninterference of typed programs.

Theorem 4.7 (Noninterference)Assume∅, u `Top e :
〈 S, I,F ,A〉\C, wherehigh 6∈ S. If J e KS →∗ L c MSc ,
for any ∅, u `Top L c1 MS1 : 〈 S1, I1,F1,A1 〉\C1 in
e where high ∈ S1, and any ∅, u `Top L c2 MS2 :
〈 S2, I2,F2,A1 〉\C2 wherehigh ∈ S2 and J [L c1 MS1 7→
L c2 MS2 ]e KS →∗ L c′ MS ′c , thenc == c′.
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Proof. This follows directly from Lemma 4.3 and Theorem
4.5. ut

5. IO Analysis of Information Flows

In this section we describe in more detail how IO inter-
faces may be extracted from FJ programs. The motivations
for this were covered in Section 2, and an example of the
results it produces were presented in Section 3.

We extend the label type system to use it to extract
information flows at IO points. Here, we focus only
on InputStream and OutputStream classes, the parent
classes for much of the IO functionality in Java. For in-
put points, the extraction produces a summary of the labels
assigned to data on each input channel. For each output
point, the secrecy and integrity labels on the output data is
given. The analysis also presents labels that were declassi-
fied on this flow path, so programmers may examine the de-
classification to ensure its accuracy. Finally, the extraction
describes any checks that are enforced on the data before
output.

5.1. Example Extraction

The following extractions from the password program
illustrate our technique, whose formalism we describe in
the following section.

Input : SysFileIS.read
Returns : int
Labels : {Secret, Sys}

This comes from reading the input from the password
file. passIn.readLine() will trigger this, since it is read-
ing from aSysFileIS through aReader wrapper. This
extraction shows that aread message withint return type
was called on aSysFileIS object, and the labels placed on
the input were{Secret,Sys}.

Output : ScreenPS.println(String s)
Secrecy:∅ Integrity: ∅
Declassifications:{Secret, Sys, User}
Checks:Forbid(s, {Secret, Sys, User})

This comes from thescreen.println() statements.
The extraction shows that aprintln method with a
String argument was invoked on aScreenPS object. The
output data had no secrecy or integrity labels, but the labels
{Secret, Sys, User} were at some point declassified. A
Forbid check on theString arguments was performed
before output.

Notice the same labels are declassified as those that oc-
cur in the check. This may alert the programmer to a possi-
ble leak in the security of the program, and the accuracy of
the declassification should be confirmed.

5.2. Formalism for Extraction of IO Points

We enrich our type system to aid in extraction; types are
now Γ ` e : 〈 S, I,D,F ,A〉\C. TheS, I,F ,A are as be-
fore. D accumulates labels that were declassified at some
point on this path; andInput and Output constraints, as
defined below, may now be included inC. We omit the en-
riched type and closure rules for space reasons, and instead
summarize the key additions in words.

In the enriched (Declassify) type rule, the declassified
labels are added to theD type. Only the labelsactually
being removed from the type are added, which may be less
than the labels in theDeclassify statement. This is done
by intersecting the declassified labels with the secrecy label
set.

The enriched type system also includes two new
(Method) rules that apply only to method calls on
InputStream or OutputStream objects. Input points
Input(A, m, τ) are extracted whenever a method is called on
an object that is a subclass ofInputStream. The extraction
has the actual type of the object,A, the name of the method,
m, and the label type on the return value of this particular
method call,τ . Output pointsOutput(A, m, {τ̄}, Ck) are
extracted whenever a method is called on an object that is
a subclass ofOutputStream. The extraction consists of
the actual type of the object,A, the name of the method,m,
and the label types of every argument to the method{τ̄}.
Checks on output points,Ck are compiled after the con-
straint closure has been computed, as discussed below.

Note that we are extractingα types instead of the de-
clared Java types in order to track the actual classes of the
objects being called, and not the declared one, which may
be some supertype of the actual type.

The extracted IO points shown to the user are
those which contain only concrete types and labels.
Output(C, m, 〈 s, i , d , f , α 〉, ∅) is useless to a programmer
due to the presence of unresolved variables, and will not be
shown in the final analysis.

After all of the IO points have been extracted, and we
have sorted out only those with concrete types and labels,
the checks on the output points are extracted by looking at
the method in the label table, and pulling out all theFC and
EC constraints from the constraint set. The labels being
checked are matched with the arguments, and the extraction
informs the user as to which arguments to the method were
checked. The final output is seen in the extraction example
of section 5.1.

5.3. Top-level Policies

In this section, we present a policy system for declaring
class-based policies at the top level of a program, meaning
the policy will not be buried in the code. This also pro-
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class C :
C m(C̄ x̄) :
Label(L) � C m(C̄ x̄){return e; } ⇒ C m(C̄ x̄){return Label(e, L); }
Ensure(x, L) � C m(C̄ x̄){return e; } ⇒ C m(C̄ x̄){return Ensure(x, L); e; }
Forbid(x, L) � C m(C̄ x̄){return e; } ⇒ C m(C̄ x̄){return Forbid(x, L); e; }
Declassify(L) � C m(C̄ x̄){return e; } ⇒ C m(C̄ x̄){return Declassify(e, L); }

Figure 9. Top-level Policy Translation

vides a simpler means of adding information flow controls
to programs, since the underlying programs will not need
to include any explicit flow annotations and so there is no
need to define a new language syntax for an information
flow extension.

We use a simple translation-based approach for these
top-level policies. Given a valid program and a top-level
policy, the translation produces a new program withLabel,
Ensure, Forbid, andDeclassify statements inserted so
as to enforce the policy. Policies are declared at the per
method level in a class. Each policy statement for a class
C produces a translation, where methodM is translated to
M′, which includes the information flow statement. Figure 9
gives the translation rules.

Policies consist of four types of statements.Forbid and
Ensure statements insert checks that immediately check
the labels on arguments when they are passed to a method,
before executing the body of the method. This is useful
for checking the labels on values before output.Label
statements are used to label data that is returned from a
method, which is useful for labeling data on an input stream.
Declassify statements specify what labels will be declas-
sified from the method’s return value. Note that although we
provide the ability to specify declassification policies at the
top-level, declassification of data requires knowledge of the
underlying code to be sure the data is truly diluted enough
to warrant declassification, so it must be used with care.

5.3.1. Example Top-level Policies

The following is a top-level policy for the program for
changing passwords in section 3.

class SysFileIS
read(): Label({Secret,Sys})
class UserBufferedIS
read(): Label({Secret,User})
class PwdFileOS
write(int v): Ensure(v,{Secret})
class ScreenPS
println(String s):
Forbid(s,{User,Sys,Secret})

class PwdFile

ChangePwd(String uname,oldpwd,newpwd):
Declassify({User,Sys,Secret})

Supposing the program had no explicit information flow
labels, checks, or declassifications; if this policy were ap-
plied to that program, we would obtain a program identical
to the one presented in Section 3. Even though programs
may contain no explicit information flow policy informa-
tion, it still may be necessary to rewrite parts of a program
for purposes of adding an information flow policy: a unique
subclass needs to be defined for each different IO security
policy. We believe this is independently a good thing, be-
cause it gives an object-oriented information flow policy.

6. Related Work

Static analysis of information flow control systems is a
well-studied area [12, 31, 32, 4, 1, 23]; Sabelfeld and Myers
present a survey in [26]. Much of the literature focuses on
proving formal results for small programming languages,
although there has been some focus on working systems
[24, 19]. None of the previous work focuses on IO bound-
aries or explicit checks.

Several information flow extensions to languages have
been implemented. Flow Caml [24] is an information flow
extension to Core ML. The JFlow/Jif system [19, 20], pro-
vides information flow control for full Java. Both sys-
tems provide some control of information flow at IO points
by wrapping raw IO channels with information flow la-
bels. Channels are then treated as variables and given la-
bels based on those principals who are presumed to have
access to the channels. This methodology means checks
on IO channels are intermixed with the multitude of other
internal checks within a program (e.g. on function applica-
tion, or assignment). Our system is designed to reduce the
number of checks to IO points only.

Jif is unique as an information flow system since it cov-
ers essentially the full Java language, but it lacks a formal
analysis. Jif provides parametric polymorphism and some
inference of labels. Programs must be annotated with se-
curity labels, including label parameters for polymorphic
classes. This creates a backward compatibility issue, where
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all code must be re-coded to introduce the proper annota-
tions. Additionally, method overloading requires subclass
types to conform to the types of the superclass.

Our type system in contrast infers all label types and all
parametric polymorphism, removing the need for additional
program annotations. Our label types are inferred across
existing code, meaning libraries can be used as is, provided
the proper labels and checks are placed on the IO points in
the program.

We incorporate a concrete class analysis [3, 22, 33] that
tracks the concrete classes of objects through the program,
allowing us to statically determine a conservative approxi-
mation of the runtime object. This means overridden meth-
ods in the subclass can have different types from the su-
perclass, and the type system will correctly distinguish the
information flow controls on the different objects statically.

Banerjee and Naumann [4, 5] prove noninterference for
an information flow type system for a Java-like language us-
ing a denotational semantics. They provide an inference ex-
tension for libraries that are parameterized by security levels
[29]. This is a similar form of polymorphism to Jif, requir-
ing annotations in the form of label parameters. They also
require polymorphic types for methods must be satisfied by
all overriding methods. As mentioned above, we employ a
more implicit polymorphism that requires no program mod-
ifications, and we prove soundness and noninterference us-
ing an extensible operational approach.

Flow Caml provides label type inference and parametric
polymorphism for an information flow extension to Core
ML. They prove soundness of type inference and a nonin-
terference property. Our form of polymorphism and type
inference also differs from Flow Caml in that Flow Caml is
also not based on concrete class analysis. In addition, our
type system is significantly different, since it is based on
an object-oriented language, which presents unique issues,
(i.e. inheritance) that do not arise in a functional language.

Several recent works have developed policies for down-
grading data. Li and Zdancewic [15] and Chong and Myers
[8] describe systems which provide downgrading policies
that specify the conditions under which data can be declas-
sified. Thus, the data labels contain policies which describe
when it is safe to declassify the data, whether after a certain
method call, operation, or some other property. In com-
parison, our policies for downgrading are attached to the
methods. The method policies describe what labels will be
downgraded for data passed to the method. This mechanism
follows the object-oriented philosophy, allowing downgrad-
ing at the class and method level, and showing it in the API.
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