
Static Enforcement of Security with Types

Christian Skalka
The Johns Hopkins University

ces@blaze.cs.jhu.edu

Scott Smith
The Johns Hopkins University

scott@cs.jhu.edu

ABSTRACT
A number of security systems for programming languages have re-
cently appeared, including systems for enforcing some form of ac-
cess control. The Java JDK 1.2 security architecture is one such
system that is widely studied and used. While the architecture has
many appealing features, access control checks are all implemented
via dynamic method calls. This is a highly non-declarative form of
specification which is hard to read, and which leads to additional
run-time overhead. In this paper, we present a novel security type
system that enforces the same security guarantees as Java Stack In-
spection, but via a static type system with no additional run-time
checks. The system allows security properties of programs to be
clearly expressed within the types themselves. We also define and
prove correct an inference algorithm for security types, meaning
that the system has the potential to be layered on top of the existing
Java architecture, without requiring new syntax.

1. INTRODUCTION
Security in language design is a rising concern due to the internet

and increased portability of code. In particular, code-level access
control—control over what code gets access to which recources—
has become essential to protecting the local system from non-local,
possibly untrusted code. The Java Security Architecture [7], found
in Java JDK 1.2, is the most widely known and used system for
enforcing code-level access control. This security architecture is
implemented as a set of methods, executed during runtime, which
are simply components of a security library. However, since access
controls are enforced via ordinary method calls in the program it-
self, it is difficult to determine which access controls are actually
in place by inspection of the code. Furthermore, the dynamic na-
ture of security checks interferes with compiler optimizations (see
[15]). Our goal is to develop a static, integrated and declarative
security architecture for general-purpose programming languages.
In this paper, we develop a novel static type system for enforcing

safety with respect to certain access control properties at run-time.
In this system, security information is coded in the form of security
types, and the type system properly enforces propagation of this
information.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICFP ’00,Montreal, Canada.
Copyright 2000 ACM 1-58113-202-6/00/0009 ..$5.00

The aim is an expressive, flexible discipline for code-based ac-
cess control, providing static verification that security checks are
met, and allowing run-time security checks (and possible run-time
security exceptions) to be avoided. In particular, we present an al-
ternative to stack inspection, the security discipline at the heart of
the JDK security architecture. This discipline is enforced by a run-
time check which analyzes the call stack. The advantages of static
over dynamic enforcement of properties is well-known in program-
ming language design:

Types themselves serve as concise readable specifications of
program behavior;

Lack of a class of run-time errors gives more reliable execu-
tion behavior;

Compilers can generate better code if more is known about
program behavior, via types, at compile time.

In the context of secure programming, “more reliable” directly trans-
lates to “more secure” and so is of particular concern. Also, secu-
rity bugs often originate from a misunderstanding of how the secu-
rity framework is to be properly utilized, and not from fundamental
flaws in the framework itself. Thus, the usual benefits of static
type frameworks provide a particular advantage over dynamic ap-
proaches to the enforcement of security.

1.1 Review and critique of the JDK Security
Architecture

An oversimplified view of our goal is to produce a cleaner, more
declarative version of the JDK 1.2 Security Architecture [7]. This
architecture is implemented and widely used, so whatever short-
comings it may have, it is well-grounded in practicum. Thus, it is
a strong grounding point for a formal treatment of access control,
and this paper is intended as a basis for understanding the applica-
tion of types to access control security. The reader familiar with the
JDK security architecture will note that some of its more complex
features, e.g. privilege inheritance and parameterized privileges,
are not modeled in our system—but our goal here is more a solid
foundation for static access control rather than a complete model of
the JDK security architecture.
The Java system is fundamentally a dynamic security checking

system in that access restrictions are all checked at run-time and
not compile-time. To use the system, the programmer adds “do
privileged” and “check privilege” commands to the code. A “do
privileged” command adds a flag to the caller’s stack frame, which
is eliminated when the frame returns. When a privilege is checked
via “check privilege” command, the stack frames are searched most
to least recent. If a frame is encountered with the desired flag, the
check succeeds. Also, all programs in JDK 1.2 come with a speci-
fied owner. This means that stack frames have owners, which may

(principals)
(privileges)
(variables)
(values)

(expressions)

(privilege sets)
(access credentials)

(secstacks)

Figure 1: Grammar for sec

be untrusted for some privilege; if such an owner is encountered
before success, the check fails. See [6] for a concise description of
stack inspection and how it may be used to enforce security prop-
erties. A simplified model of the JDK 1.2 security architecture and
the stack inspection algorithm is presented below (section 2).
The Java security architecture is a solid proposal which is being

applied in practice, but it has significant flaws. There is a perfor-
mance penalty to pay due to the need for run-time stack inspection–
though a technique called security-passing style [15] has been pro-
posed to lessen the need to literally inspect every stack frame. How-
ever, even this solution does not address the ad hoc nature of the
architecture; all security properties are enforced by method calls, a
highly non-declarative form of specification. This makes the access
control specification very difficult to read—it is all buried in the
code and the implicit control flow structure of that code. Specifica-
tions that are difficult to read are easy to get wrong, and a security
specification is the last thing you want to get wrong. This paper
begins to explore some solutions to these problems through the use
of static type systems.
The structure of our presentation is as follows: in Section 2, we

formalize the Java Stack Inspection security enforcement mecha-
nism within a small functional calculus. In Section 3, we define
our new security type system which statically enforces all the prop-
erties of stack inspection, and thus obviates the need for run-time
stack inspection. In Section 4 we define and prove correct a type
inference algorithm, meaning that types can replace stack inspec-
tion transparently in our functional calculus. In Section 5, some
related work is cited and described. We conclude in Section 6, with
remarks on future work.

2. FORMALIZING JAVA STACK INSPEC-
TION

In this section, we develop simple model of the Java JDK 1.2
security architecture, by defining a small language containing basic
access control features, and by formalizing stack inspection for that
language.

2.1 The language sec

For our analysis we define the language sec, a small functional
language with constructs for ownership, access credential lists, and
enabling and checking privileges. The language is a simplified
model of the JDK 1.2 security architecture. As the initial security
discipline, we define a stack inspection algorithm which is a for-
malization of Java stack inspection. We then use this formalization
to prove soundness properties of our type system. Although the lan-
guage model is simple, it covers significant ground, and more com-
plex features can be added to this core. The addition of records and

objects to the language, for example, can be added without serious
additional challenge; the per-function security defined here trans-
lates to per-method security in an object-oriented language. Mod-
ules, on the other hand, are a greater challenge because component
linking occurs at the module level and authentication of principals
will be needed; adding modules is a topic of future work.
The language contains the usual lambda expressions, and also

notions of privilege and function ownership. Privileges, denoted as
and ranging over the set of identifiers , model rights such as

, , etc., that a system might specify. They
are activated and checked by and expressions—
our version of the do privileged and check privilege commands—
and every function has a specified owner , which is the identity of
a principal (a similar annotation of expressions with owner names
is described in [8]).
In any given system, every principal is authorized for a par-

ticular set of privileges ; this is expressed via the access creden-
tials mapping , where for any principal , is the finite set
of valid privileges for . We assume as given a possibly infinite
set of privileges that the system draws upon– i.e., for all ,

. We say that a program is unsafe iff it reduces to
the value ; this value exists precisely to represent an opera-
tional security failure. The full grammar for language expressions
and constructs used in the operational semantics are given in Figure
1, where , and are disjoint sets of identifiers. The
language includes and expressions, as well as

which indicates a function owned by , and which
is a state indicating a security violation occurred; this would be an
exception in a language with exceptions but we simplify here and
abort in the case of failure.

2.2 Language examples
Before precisely defining the stack inspection and reduction se-

mantics, we informally illustrate the operational nature of the sys-
tem with some simple examples. The behavior asserted in these
examples may be rigorously verified by the operational semantics
that follows. Note that for the moment we ignore function owner-
ship and access credentials for ease of presentation. Let:

Each of these expressions are safe in a top-level environment; the
only term that could cause problems is , but the security check is
frozen by the lambda abstraction. If it is unfrozen by the applica-
tion in an environment with the privilege not enabled, then
a security error will occur: reduces to . However, it is
possible to “wrap” with , yielding a function which is equiva-
lent to , but which can be safely applied in an environment with-
out enabled: for example, is safe in any environment,
because enables before it is checked in the body of .
Privileges exist “on the stack” only as long as the stack frame in

which they were granted exists. This means that in the expression
, is enabled only for at the time of evaluation.

A somewhat strange consequence of this can be demonstrated with
the following relationships, where and with
meaning operational equivalence:

These relationships hold because the is frozen by lambda
abstraction in , but not in . As a demonstration,
observe that the expression is not safe.

(letpriv)

(checkpriv)

(appl)

(val)

(checkprivf)

(applfr)

(applfl)

Figure 2: Operational semantics for sec

Now, we introduce the notion of function ownership. Let be
redefined as follows, in the full sec syntax:

This definition specifies that the owner of is the principal . In
conjunction with ownership, the access credential list becomes
relevant to the safety of the language. For example, suppose that the
local access control list specifies that is completely untrusted–
that is, that has no privileges:

Then the function is useless locally, since the ex-
pression in it will fail stack inspection in every security context–
the operational semantics require that the owner of a function be
entitled to the privileges necessary for its use. Informally, we may
say that is useless because it needs , which is not authorized
for. Further, if were defined to call a function which needs ,
then it would also fail. On the other hand, if the local access control
list is , which entitles to the privilege :

then could safely be applied in certain environments– in partic-
ular, environments with enabled by a preceding . In an
environment of mixed local and “outsider” code, this system will
prevent outside code from accessing unauthorized local resources.
For example, suppose in the local system we wish to make print-

ing a privileged resource, available to some trusted non-local par-
ties. In this case, where we assume the function is avail-
able only to the local system, a “secured” print function
could be made available to external code:

Then, code owned by some outsider could try to use :

Letting , we see that if as defined above is
the local access credential list, implying that is not trusted for

, then is useless. But if defines the
local policy, can be used in certain contexts (i.e., with

enabled).

2.3 The stack inspection algorithm
We now give the formal definition of stack inspection, which

makes rigorous the informal assertions in the previous examples.
Security stacks are used in the operational semantics to dy-

namically check security properties. Each element of the stack rep-
resents the security information for a given stack frame, notated

, which indicates a stack frame owned by and containing
activated privileges . The function inspects the stack and
returns whether the stack is legal or not:

This algorithm implements the Java stack inspection algorithm:
given a privilege , the stack is searched frame by frame from the
current frame until the privilege is found on the stack (return),
or the owner of the frame lacks that credential (return), or
we ran off the top of the stack (return). The set of privileges
which are enabled on a particular stack , given some access cre-
dential list , is denoted ; i.e.,

Using the stack inspection algorithm, we can define the opera-
tional semantics of sec. The key differences from a standard oper-
ational semantics are that

function application adds a new frame to the security stack,

adds a privilege to the top frame on the stack,

(type variables)
(privstruct variables)

(privstructs)

(types)

(privstruct constraints)
(type constraints)
(type mappings)

(type judgements)

Figure 3: Security Type Grammar

inspects the stack via to make sure the
needed privilege is found,

if a needed privilege is not found by , the entire
computation aborts with result .

A judgment in the operational semantics is written
, meaning reduces to value in environment . The rules
for the operational semantics are given in Figure 2. Note that the
letpriv reduction rule requires that any stack used in a judgement
be non-empty. Since elements can only be added to the stack, this
means that any evaluation must be initiated with a non-empty stack.
This captures the notion of a top-level owner of the program. In our
model, we assume some top-level user with , and
define the stack as the initial evaluation stack.
The top-level environment is then , and if we
write for brevity.
With this formalization, we can give a precise account of the

examples in subsection 2.2; e.g. with arbitrary , we deduce the
following using checkprivf, appl and val:

3. SECURITY TYPES FOR sec

In this section we present our type system for sec, and estab-
lish a type safety result for the system via subject reduction. Type
safety in this context means that no well-typed programs will ever
have any stack inspection failures during run-time execution; we
call this property security stack safety. This then obviates the need
to perform stack inspection at run-time. The type system serves an
important additional purpose: security information for programs is
clearly advertised in their types, rather than being buried in function
calls which the programmer must discover either through security
failure, or painstaking analysis of source code.
We formulate the types here as a constrained type system; for

background on these systems the reader is referred to any of [1,
5, 9]. Our presentation here, especially our proof method, most
closely follows Henglein’s presentation in [9]. The question of
whether to use a constrained or constraint-free system as a basis
for this work is largely one of style; we chose the former mainly

because of our previous experience with such formalisms [5]. The
general ideas should be applicable across a wide range of type sys-
tems. The security type grammar is defined in figure 3.

3.1 Security types overview
The most novel feature of security types are the privstructs

that decorate function types. The general idea is that if a function
has type , then expresses the privileges necessary to

execute . A simplified example is:

Note that privstruct expressions , defined in Figure 3, include
ground privilege sets , privilege set variables , and operators
thereupon.
A security type judgement is of the form

This judgement asserts that under type environment (a mapping
from expression variables to types), with representing the cur-
rently enabled privileges, then the code , owned by principal , has
type with constraints . contains the set constraints
that are imposed by function ownership; for any subterm of
that needs , the constraint is in . This ensures

that the security requirements of functions do not exceed the priv-
ileges granted to the owner. is the usual type constraint set,
containing elements of the form .

3.2 Security type examples
In this subsection, we develop an understanding of our type sys-

tem by introducing its features piece by piece. Each example is
really a simplified type, with some formal features left out for the
sake of clarity. Let be defined as follows:

Then we may give the type , noting that it requires
no privileges to execute. Such a valid type judgment with regard to
a particular access control list can be written as:

Privileges start showing up in types when ’s and ’s
are used. When privileges are enabled or checked, either action is
made with respect to the current security environent. For example,
a privilege may be safely checked if it is in the current environment:

But no privileges need be in the current environment if the
is nested within a valid for the same privilege:

These ideas are formalized in the letpriv and checkpriv typing rules
in figure 5. The current needs of an expression are generally
defined by the set of un-enabled privileges that are checked in the
expression.
Function application requires special consideration in the type

system, since if a function applies another function , then the
needs of must be considered in determining the needs of . Let
be defined as follows:

In the body of , is applied, but the needs of are abstract. This
can be reflected in the type, through the use of a set variable :

(coerce)

(ref)

(trans)

()

Figure 4: Subtype Judgement Rules

Note that to the right of the symbol is a constraint set containing
; this imposes the requirement that whatever is, it must

be a subset of the privileges entitled to according to . So if we
assume that , then can be instantiated to , and
can be instantiated to to yield:

And with defined as in subsection 2.2:

Therefore, the application can be typed, as long as the cur-
rent security environment contains , since needs . In general,
all types have a current security environment and current owner
, with the requirement that is satisfiable in addition to
the other constraints; this and are written to the left of the
in any type judgement. So for example:

where we stipulate that must hold for the judgement
to be valid.
We now give a formal treatment of satisfying privstruct substi-

tutions, which are substitutions that induce a set interpretation of
privstructs associated with a type, which is consistent with the set
constraints in the type.

3.3 Satisfiability and type validity
Since privstructs may contain set variables , they are not sets

per se, but rather datatypes that are mapped to privilege sets via
substitution and a set interpretation function. For example, if we
take , then by applying the substitution
to we obtain the privstruct , which is mapped to the
set under our set interpretation. In general, the privstruct
datatype constructors and are interpreted as the set operations
and . We state this formally as follows:

DEFINITION 3.1. A substitution is a set of the form
, with substitution application defined in the ob-

vious manner. The privstruct meaning function is defined as fol-
lows:

is undefined

If is defined, we say that . The usual set re-
lations may be applied to sets , e.g. . For
brevity, we say that iff for all with ,

, and iff for all for which
. We also define an ordering on substitutions,

where iff for all such that
.

As described in the previous subsection, the set in a type
judgement defines constraints on privstructs imposed by function
ownership. That is, if a function is owned by , then the privi-
leges required to execute must be a subset of the privileges
which is entitled to. Thus, a substitution that satisfies is a
substitution that maps all privstructs in to “ground” privstructs
such that the constraints in hold under our set interpretation. In
other words, satisfies iff for all ,

.
In addition to , the type constraint set can also include

privstruct constraints. Security types include a subtyping judge-
ment , defined in figure 4. We let
abbreviate for all . Note that is
transitive over constraint sets:

PROPOSITION 3.2. If and , then
.

PROOF. By induction on the derivation of ,
where .

Thus, the subtyping relations in any impose constraints on
privstructs because in order for the type system to be sound,

must imply . Intuitively,
this is because it is safe to overestimate the security requirements
of a function, but it is not safe to underestimate them.
Privstruct constraint satisfaction is defined via a standard clo-

sure operation which is the transitive and functional closure of type
constraint sets . First, we give a definition of closure for any set

:

DEFINITION 3.3 (CLOSURE). The closure of , de-
noted , is the least set satisfying the following
properties:

If , then
and (fn closure).

If and , then
. (transitive closure)

is easily shown to be computable by iteration.

Now, satisfiability of set, type constraint pairs may be
defined.

DEFINITION 3.4 (PRIVSTRUCT SATISFIABILITY). Let

and let . Then the set, type constraint
pair is satisfiable iff there exists some such that for all

it is the case that . The
function name stands for “set constraints”, because it gleans set
constraints imposed by the type coercions in .

(var)

(letpriv) if

otherwise

(checkpriv)

(fn)

(appl)

(sub)

Figure 5: Type Judgement Rules

The above definition of satisfiable is elegant, but needs a stronger
characterization, csatisfiable, for use in subject reduction.

DEFINITION 3.5 (-CONSISTENCY). The type constraint
set is consistent iff for all derivations

, there exists a derivation with the same conclusion and
with the final step an instance of .

DEFINITION 3.6 (SATISFIABILITY CHARACTERIZATION).
The set, type constraint set pair is csatisfiable iff there
exists some such that for all it is the case
that , and there exists a consistent such that

. Abusing terminology, we may also speak of
satisfying or alone, with the obvious meaning.

The following lemma establishes the interchangeability of satis-
fiability and its characterization:

LEMMA 3.7. satisfies iff csatisfies .

Subtyping judgements are closed under satisfying substitutions,
a fact demonstrated by the following proposition:

PROPOSITION 3.8. If satisfies and , then
.

PROOF. By rule induction on .

With this notion of constraint satisfiability, we can formally de-
fine type validity as follows:

DEFINITION 3.9 (TYPE VALIDITY). The typing
is valid iff there exists a derivation with this conclu-

sion, and an that satisfies .

If and
then we write for brevity, and we write
if is understood from context and , and are empty.
If a type contains no set variables , we say that it is concrete;
the following result establishes that if has a type, then it has a
concrete type:

PROPOSITION 3.10. If is satis-
fied by , then which is
concrete.

PROOF. Since generates a concrete type by definition, the re-
sult is implied by the validity of the generated type, which follows
by induction on the length of the type derivation.

3.4 Type safety and subject reduction
Our goal for security types is to prove that any well-typed pro-

gram is operationally safe according to the Java stack inspection
model defined in section 1. To characterize the desired theorem,
we use the notion of security failure specified in the operational
semantics: any unsafe program reduces to .

THEOREM 3.11 (SECURITY TYPE SAFETY). If the type
is valid, then it is not the case that

.

The theorem is proved by a standard subject reduction argument.
Note that we phrase subject reduction in terms of concrete types,
since operational judgements are always concrete in the sense that

is always a ground set for any stack .

THEOREM 3.12 (SUBJECT REDUCTION). If
is concrete, and with

and in the head of , then .

To prove subject reduction, we first demonstrate two lemmas re-
lated to subtyping which allow us to deal almost exclusively with
the non-subsumption rules in the induction for subject reduction;
we also demonstrate the usual “substitution” lemma in a form ap-
propriate for security types.

LEMMA 3.13. If , then there
exists a subderivation of , where

, such that if , then the last step in the sub-
derivation is an instance of var, if then the last step in
the subderivation is an instance of fn, etc. for each term type and
the corresponding type rule.

PROOF. Each term form clearly must have an instance of its
corresponding type rule in the type derivation. And since only in-
stances of sub can be interposed between the derivations of

and , the lemma fol-
lows via a straightforward induction on the number of interposed
steps.

LEMMA 3.14 (SUBSTITUTION). Supposing ,
if and

, then .

PROOF. By structural induction on and case analysis. Here we
give only the application case, letting :

() By lemma 3.13, there exists the following step in the
derivation of the type of in this case, where :

By the induction hypothesis,
and . Thus,

by the definition of substitution and appl,
so the lemma holds in this case by sub.

The following is another “utility” lemma for subject reduction,
showing that a value is safe in any current security context:

LEMMA 3.15. If and
, then .

Now, we can prove the necessary subject reduction result:

PROOF OF THEOREM 3.12 By induction on the derivation of
. Here we show only the appication case: ()

By lemma 3.13, there exists the following step in the derivation of
the type of in this case, where :

By the operational semantics in this case,
and , and .
Thus, by the induction hypothesis,

and . Now, by lemma
3.13 there exists the following step in the derivation of the type of

:

where , and
by the concreteness of and satisfiability. But

by sub, so that

by lemma 3.14 and sub. And since
and therefore . Further,

so that , since is concrete and
satisfied; therefore by the defini-
tion of privs. Thus, by the induction hypothesis

, so that in this case by
sub and lemma 3.15.

Having established subject reduction, it is easy to demonstrate se-
curity type safety:

PROOF OF THEOREM 3.11 By proposition 3.10, if has a type
then has a concrete type. Therefore the theorem follows by theo-
rem 3.12, since has no type.

3.5 Incompleteness of the type system
There are a few sources of inconsistency in the security type

system—that is, instances in which operationally safe programs do
not have a type. Some are inherent in the approach, while some
reflect choices that were made in the design of the system. For
example, assuming that , the program:

does not have a type, but is operationally safe, since the program
defines but does not use the function. However, while it is possible
to construct the type system so that these sorts of programs are ac-
cepted, we argue that such useless functions should not be allowed,
since they are just that—useless.
There are of course the standard sources of incompleteness that

cannot be avoided. For example, assuming a standard encoding of
conditional expressions, application of the following function in a
current environment (i.e., without activated) is not well typed,
though it is always operationally safe:

Even though the branch is never taken, this sort of prop-
erty cannot in general be established by our type system. Never-
theless, this kind of incompleteness should not have a significant
effect on the usefulness of security types.
A third sort of incompleteness points to the need for polymor-

phism, which we left out of this paper to allow us to focus on the
core security issues. Assuming the standard encoding for sequenc-
ing and expressions, let be defined as follows:

Then fails, since our monomorphic type system can-
not distinguish between the two different application points of ,
but unifies them. This example demonstrates a need for at least
let-polymorphism.
In addition to issues related to the current language, branching

on privileges may be a desirable idiom for a secure language. That
is, suppose is a predicate on privileges, which holds iff a

of the same privilege suceeds (note, in a language with
exceptions, could be defined using and an ex-
ception handler). Then expressions such as

let
and
in

let
in

let ,
where is fresh

in

let
and
and
and ,
where and are fresh

in

Figure 6: The Algorithm

could be useful, and indeed this sort of expression is found in Java
JDK 1.2 programs. However, our system as currently conceived
does not include types that depend on the dynamic security level
of the execution context. But, there is a practical need to perform
such a case analysis to allow for rollback behavior in the event some
higher access right is unavailable but a weaker alternative is avail-
able. So, in future work we plan to extend our type system in this
direction.

4. SECURITY TYPE INFERENCE
Some form of type inference is an essential component of static

security typing, since we do not want to burden users with the need
to modify most types in their programs. In the following presenta-
tion, type inference requires no input from the user so is optimal in
that sense, but does not always produce easily readable types. So
we do not claim the final solution has been achieved.
Our type inference algorithm, defined in figure 7,

resembles the standard constraint type inference algorithms (e.g.,
see [5]), with the addition of an algorithm for inferring a satisfying
substitution for any constraint sets generated by type
inference.
As usual, the correctness of type inference is stated in terms of

soundness and completeness—that is, that any inferred type is
valid, and if a term has a type then a type will be inferred
that is “most general”, in the sense that is an instance of . We
follow Henglein’s syntactic halbstark relation, described in [9], in
characterizing our instance relation. Note that the definition does
not require that either typing in a relation be valid:

DEFINITION 4.1 (INSTANCE RELATION). The type
is an instance of

, written , iff there exist and such that

1.

2.

3.

4. and

In the above, is a security type substitution defined in the obvious
manner, and is a privstruct substitution defined similarly as in
definition 3.1, except that any may be mapped to a privstruct
containing other set variables (i.e., it is not a “ground” substitution).
For clause 4, the relation holds iff for all

there exists such that .

For the purposes of our proofs, we must at least establish that if
and is valid, then so is . We do this with the following

lemmas.

LEMMA 4.2. If satisfies and and
, then satisfies .

PROOF. By definition 3.4, and transitivity of and .

LEMMA 4.3. If is a valid type and , then is valid.

PROOF. By lemma 4.2 and rule induction on .

With this characterization of , our main result for type infer-
ence may be stated as follows.

THEOREM 4.4 (CORRECTNESS OF TYPE INFERENCE). The
type inference algorithm returns for iff

is a valid type judgement, and for all
valid type judgements it is the case that

.

This theorem is proven in the following subsections. Inspection
of the reveals that the real work of the algorithm is
done by the auxiliary functions , which infers the type struc-
ture, and , which verifies the existence of a satisfying sub-
stitution for the type. Hence, the correctness proof of
is accomplished by way of correctness proofs for (in par-
ticular, we prove soundness and completeness results for this algo-
rithm), and . First, we give a brief example to illustrate the
workings of the inference algorithm.

4.1 Type inference example
Let and be defined as in subsection 3.1. Suppose we are

inferring the type of ; then will infer the following
types for these functions separately:

Now, let:

Then the top-level type inferred for the expression will be

Note that imposes the constraint by definition 3.4, so
that in order for this type to be valid, the constraints

let

if then
else

in
iff for all ,

let
and
and
and
in

if then
else raise

Figure 7: The and Algorithms

must all be satisfiable. Of course, this is possible only if
and , in which case e.g. satisfies these con-
straints. In any case, addresses the problem of set constraint
satisfiability.

4.2 Soundness of
The soundness result for establishes that any type returned

is indeed valid, modulo the satisfiability of the constraint sets gen-
erated; this is because the issue of satisfiability is handled not by

, but by . To assist in the soundness proof, we demon-
strate the following lemma, which shows that type judgements are
preserved by “pumping up” the constraint sets:

LEMMA 4.5. If and ,
and , where

is satisfiable, then .

PROOF. The lemma follows by definition of the typing and
rules.

Now it is easy to state and prove the appropriate soundness re-
sult:

LEMMA 4.6 (SOUNDNESS OF). If re-
turns and is satisfiable,
then .

PROOF. The lemma follows by structural induction on . Here
we demonstrate only the case . Let re-
turn and return

; then by the definition of the algorithm:

By the induction hypothesis,
and , therefore

and by lemma 4.5.
Thus by sub, and clearly

, therefore by appl.

4.3 Completeness of
Our completeness result shows that the algorithm returns

a most general type, in the sense formalized by the relation. For
the purposes of the proof we informally note that any type mapping
used by maps expression variables to type variables ,

and observe that this invariant is maintained throughout execution
of by definition of the algorithm.

LEMMA 4.7 (COMPLETENESS OF). If the type
is valid, then re-

turns such that
is valid and .

PROOF. By lemma 4.3, the proof follows by showing that the
type returned by is most general according to . We es-
tablish this property by induction on the type judgement; here we
show only the case . By lemma 3.13, there exists the
following step in the derivation of the type of , where :

Let return and let
return ; then by the definition of the al-

gorithm:

By the induction hypothesis, there exist substitutions , ,
and such that for it case that ,

, etc. for each condition of the appropriate
relations. We note that in objects and returned by dis-

tinct recursive calls to , any set variables will be fresh, so
that and have disjoint domains. Furthemore, by construc-
tion of the proof, and need differ from only in terms
of those type variables generated for the application case, which
are fresh. Thus, there exist and

such that ,
and , and also

and . Let and
; since and are fresh, therefore

and , so that
by . And there-

fore , and clearly , etc., so this
case holds by sub and definition 4.1, since and

.

4.4 Correctness of and
The final step in establishing the correctness of type inference is

the proof of corretness for satisfy, which we state as follows:

if then
else let

in

Figure 8: The algorithm and operator

THEOREM 4.8. If and are generated by , then
holds iff is satisfiable.

We determine whether is satisfiable by providing the
least solution to and checking it against the constraints in .
The least solution of is the fixpoint of an appropriately defined
operator , defined in figure 8. However, it is not immediately
obvious that this operator has a fixed point at , so we define a
function in figure 7 that clearly terminates, and show that it is
the least fixpoint of .
In theorem 4.8 the stipulation that and are returned by

is important; the form of the constraints in such sets shapes
our solution method. The following lemmas demonstrate that all
set constraints imposed by are of the form . Thus, the
least soluction of these constraints define a system of lower bounds
on the size of each .

LEMMA 4.9. If is returned by , then for all
, is some set variable and is some

type variable .

PROOF. By induction on the number of closure rounds neces-
sary to close .

LEMMA 4.10. If for some returned
by , then for all , is a variable .

PROOF. Immediate by lemma 4.9 and the definition of .

Now, we note further that any constraint in will be of the
form , so that to satisfy we want to find a “smallest
possible” substitution; see lemma 4.18. Since the previous lemma
establishes that imposes a system of lower bounds on set vari-
ables, the problem of satisfying reduces to one of finding
the glb of set variables given , and then checking these bounds
against the constraints imposed by . The function defined in
figure 7 solves this problem, so the heart of the correctness proof of

examines its definition. More precisely, we analyze by
way of the more general function defined in figure 8, which
has features more amenable to our proof.

The essential steps in our proof use the functional operator
given in figure 8; is defined in an environment with
bound to where is returned by . In
particular, we demonstrate that any fixpoint of is a solution to
the problem of finding a satisfying substitution for (lemma
4.11), and then show that is a least fixpoint of (lemma
4.15). Our technique is inspired by the notion of an inductive def-
initions as described in [10], but is quite simple and requires none
of the deeper theoretical results from that paper.

LEMMA 4.11. If is a fixpoint of , there exists a substition
that satisfies such that .

PROOF. Let be such that ; then it is easy to show
that the first three clauses of ensure that there exists such
that . And, by the fourth clause of it is the case that

for all and , so that satisfies
by lemma 4.9 and definition 3.4.

Now we need to show that is a fixpoint of . The
biggest issue to be dealt with here regards cycles in . The
following lemma establishes that if a recursive occurence of any
is encountered, we may substitute any value for at this point in
computation, and the top-level evaluation grows monotonically in
.

LEMMA 4.12. Let and
; then .

PROOF. By induction on the call tree of
.

COROLLARY 4.13. If and and
, then .

At this point we demonstrate the following lemma, which is es-
sential for proving that is a fixpoint of :

LEMMA 4.14. Let ,
and , and let ; then

.

PROOF. By induction on the call tree of .

Having established the previous results, it is easy to prove that
is a fixpoint of :

LEMMA 4.15. Let . Then
is a fixpoint of .

PROOF. The proof proceeds by case analysis of arbitrary . In
case that , or , the lemma follows imme-
diately by the definitions of and . Suppose on the other
hand that ; then by the definition of :

and since , therefore by the definition of :

Now, for each let , let
, and let and . By lemma 4.14,

for each , so that , i.e. .
Therefore, the lemma follows.

The following lemma implies that is a least fixpoint of
, as explicated in lemma 4.17:

LEMMA 4.16. If satisfies , then .

PROOF. The proof proceeds by the claim that for all and it
is the case that , which follows by in-
duction on the call tree of . Here we demonstrate
only the case . In this case,

over all . But

by the induction hypothesis, ;
and since satisfies by assumption, therefore

for each , so the lemma holds.

Finally, we can show that , given the appropriate argu-
ments, generates the glb of the privstructs in :

LEMMA 4.17. There exists such that ,
and also is the least substitution that satisfies .

PROOF. By lemmas 4.11 and 4.15, there exists such that
which satisfies . Furthermore, suppose some

satisfies . By lemma 4.16, , and by
corrolary 4.13, , since clearly . Therefore, the
lemma holds.

The following lemma implies that if is satisfiable, then
the glb of must satisfy :

LEMMA 4.18. If satisfies and , then satisfies
.

PROOF. By the definition of , each constraint in is of
the form . Thus, if satisfies , then for
each constraint in , so clearly if then for
each constraint, by transitivity of .

Now we piece the preceding lemmas together to establish the
correctness result for , and then the correctness result for
type inference:

PROOF OF THEOREM 4.8 (CORRECTNESS OF) By def-
inition of the algorithms, with
executing in an environment containing . Thus, the result fol-
lows by the definition of and lemmas 4.17 and 4.18.

PROOF OF THEOREM 4.4 (CORRECTNESS OF) Im-
mediate by the definition of , definition 3.4, lemmas 4.6
and 4.7 and theorem 4.8.

5. RELATED WORK
The use of static type systems to enforce or check security prop-

erties is a research area that has recently blossomed. None of the
existing work applies to the context of fine-grained access con-
trol, as this paper does, but it shows that type-based techniques are
emerging as a new methodology for securing information systems.

Type systems for analyzing the security level of data via informa-
tion flow have been developed [13, 11, 8], which are based on the
earlier static analysis of [4]. This work is using a fundamentally
different security model, the information flow model. The static in-
formation flow model of data security is derived from the classic
Bell-LaPadula security model [2] which is a dynamic information
flow model that ignores covert channels. Our proposed type system
is analogous in that it is a static version of a dynamic model.
Another approach, related to the type approach, is proof-carrying

code (PCC) [12]. In this paradigm, code is passed on the network
along with a formal proof of a property of the code; the proof can
then be mechanically checked at the server to verify that the prop-
erty holds of the code. Type systems in this certified code frame-
work can be viewed as compressed proofs—from the types it is
possible to construct a typing proof, and program properties are
implied by the proof. Walker in [14] has developed another sort
of secure certified code, by describing “security automata” which
can specify and enforce highly expressive security policies. How-
ever, certified code is in fact more general than our type-based
approach—note that we focus on properties that can be inferred,
whereas certified code approaches are often concerned with more
complex ones.
Our type system design was inspired by Crary, Walker and Mor-

risett’s static type system for memory region inference [3]. They
share the commonality of addressing stack-based properties which
are traditionally computed at run-time. Their paper does not use
constraints or inference and instead defines an explicitly-typed sys-
tem, an approach we also expect would work in this setting.

6. CONCLUSION AND FUTURE WORK
In this paper we have defined a type system which statically

enforces security in a model of the Java JDK 1.2 security archi-
tecture. In the JDK, these properties are enforced by a dynamic
stack inspection process. But the dynamic nature of stack inspec-
tion has several drawbacks, including the presence of a new class of
run-time errors, a performance penalty, and lack of code readabil-
ity due to the non-declarative nature of dynamic checks in code.
A static, type-based approach eliminates these problems. Further-
more, the outermost types of functions or methods reflect their top-
level needs, the privileges they need to execute. This means that
security types are helpful in declaring the security policies of pro-
grams, since security requirements can be placed directly in the
type signature.
We have proven a type safety result for our system, demonstrat-

ing that security types guarantee soundness with respect to stack
inspection: run-time stack inspection will never fail on well-typed
programs. Additionally, we have defined a type inference algo-
rithm, meaning that the programmer need not explicitly declare se-
curity types. Our type inference algorithm is similar in function
and complexity to standard constraint type inference algorithms.
We have also proven our type inference algorithm correct, showing
that it returns a most general type for any expression.
In this paper we have focused directly on the Java stack inspec-

tion model, as a well-understood point of departure. We have shown
that a realistic model can be captured in a statically-typed frame-
work. As future work, we intend to explore extensions to our sys-
tem, including a security model which may improve on the JDK 1.2
model. In addition to simply adding more sophisticated features to
the type system (e.g. polymorphism as discussed in subsection 3.5),
we hope to develop a realistic language and type system to express,
and enforce, the most effective security policies.

Acknowledgements
We would like to acknowledge Karl Crary for helpful discussions
and François Pottier, Ran Rinat, and the ICFP referees for helpful
comments on drafts of this paper.

7. REFERENCES
[1] A. Aiken and E. L. Wimmers. Type inclusion constraints and

type inference.z In Proceedings of the International
Conference on Functional Programming Languages and
Computer Architecture, pages 31–41, 1993.

[2] D. E. Bell and L. J. LaPadula. Secure computer systems:
Mathematical foundations and model. Technical Report
M74-244, The MITRE Corp., Bedford MA, May 1973.

[3] K. Crary, D. Walker, and G. Morrisett. Typed memory
management in a calculus of capabilities. In Conference
Record of the Twenty-sixth Annual ACM Symposium on
Principles of Programming Languages, ACM SIGPLAN
Notices. ACM Press, 1999.

[4] D. Denning. A lattice model of secure information flow. In
Communications of the ACM, pages 236–243. ACM, May
1976.

[5] J. Eifrig, S. Smith, and V. Trifonov. Type inference for
recursively constrained types and its application to OOP. In
Proceedings of the 1995 Mathematical Foundations of
Programming Semantics Conference, volume 1 of Electronic
Notes in Theoretical Computer Science. Elsevier, 1995.
http://www.elsevier.nl/locate/entcs/volume1.html.

[6] L. Gong. Java Security Architecture (JDK1.2) .
http://java.sun.com/products/jdk/1.2/docs/guide/security/spec/
security-spec.doc.html, 1998.

[7] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers.
Going beyond the sandbox: An overview of the new security
architecture in the Java Development Kit 1.2. In USENIX
Symposium on Internet Technologies and Systems, pages
103–112, Monterey, CA, Dec. 1997.

[8] N. Heintze and J. G. Riecke. The SLam calculus:
Programming with secrecy and integrity. In Conference
Record of POPL 98: The 25TH ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San
Diego, California, pages 365–377, New York, N.Y., Jan.
1998. ACM.

[9] F. Henglein. Syntactic properties of polymorphic subtyping.
TOPPS Technical Report (D-report series) D-293, DIKU,
University of Copenhagen, Universitetsparken 1, DK-2100
Copenhagen, Denmark, May 1996.

[10] A. S. Kechris and Y. N. Moschovakis. Recursion in higher
types. In J. Barwise, editor, Handbook of Mathematical
Logic, volume 90 of Studies in Logic and the Foundation of
Mathematics, chapter C.6, pages 681–737. North-Holland
Publishing Company, 1977.

[11] X. Leroy and F. Rouaix. Security properties of typed applets.
In ACM, editor, Conference record of POPL ’98: the 25th
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages: papers presented at the
Symposium, San Diego, California, 19–21 January 1998,
pages 391–403, New York, NY 10036, USA, 1998. ACM
Press.

[12] G. C. Necula and P. Lee. Safe kernel extensions without
run-time checking. In USENIX, editor, 2nd Symposium on
Operating Systems Design and Implementation (OSDI ’96),
October 28–31, 1996. Seattle, WA, pages 229–243, Berkeley,
CA, USA, Oct. 1996. USENIX.

[13] D. Volpano, G. Smith, and C. Irvine. A sound type system
for secure flow analysis. Journal of Computer Security,
4(3):167–187, Dec. 1996.

[14] D. Walker. A type system for expressive security policies. In
Twenty-seventh Symposium on Principles of Programming
Languages, pages 254–267, Boston, MA, January 2000.
ACM SIGPLAN.

[15] D. S. Wallach. A new Approach to Mobile Code Security.
PhD thesis, Princeton University, 1999.

