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Abstract
The confinement of object references is a significant se-
curity concern for modern programming languages. We
define a language that serves as a uniform model for a va-
riety of confined object reference systems. A use-based
approach to confinement is adopted, which we argue is
more expressive than previous communication-based ap-
proaches. We then develop a readable, expressive type
system for static analysis of the language, along with a
type safety result demonstrating that run-time checks can
be eliminated. The language and type system thus serve as
a reliable, declarative and efficient foundation for secure
capability-based programming and object confinement.

1 Introduction
The confinement of object references is a significant secu-
rity concern in languages such as Java. Aliasing and other
features of OO languages can make this a difficult task; re-
cent work [21, 4] has focused on the development of type
systems for enforcing various containment policies in the
presence of these features. In this extended abstract, we
describe a new language and type system for the imple-
mentation of object confinement mechanisms that is more
general than previous systems, and which is based on a
different notion of security enforcement.
Object confimement is closely related to capability-

based security, utilized in several operating systems such
as EROS [16], and also in programming language (PL) ar-
chitectures such as J-Kernel [6], E [5], and Secure Network
Objects [20]. A capability can be defined as a reference to
a data segment, along with a set of access rights to the seg-
ment [8]. An important property of capabilities is that they
are unforgeable: it cannot be faked or reconstructed from
partial information. In Java, object references are likewise
unforgeable, a property enforced by the type sytem; thus,
Java can also be considered a statically enforced capability
system.
So-called pure capability systems rely on their high

level design for safety, without any additional system-level
mechanisms for enforcing security. Other systems harden
the pure model by layering other mechanisms over pure
capabilities, to provide stronger system-level enforcement

of security; the private and protected modifiers in
Java are an example of this. Types improve the hard-
ening mechanisms of capability systems, by providing a
declarative statement of security policies, as well as im-
proving run-time efficiency through static, rather than dy-
namic, enforcement of security. Our language model and
static type analysis focuses on capability hardening, with
enough generality to be applicable to a variety of systems,
and serves as a foundation for studying object protection
in OO lanaguages.

2 Overview of the system
In this section, we informally describe some of the ideas
and features of our language, called , and show how
they improve upon previous systems. As will be demon-
strated in Sect. 5, is sufficient to implement various
OO language features, e.g. classes with methods and in-
stance variables, but with stricter and more reliable secu-
rity.

2.0.1 Use vs. communication-based security

Our approach to object confinement is related to previous
work on containment mechanisms [2, 4, 21], but has a dif-
ferent basis. Specifically, these containment mechanisms
rely on a communication-based approach to security; some
form of barriers between objects, or domain boundaries,
are specified, and security is concerned with communica-
tion of objects (or object references) across those bound-
aries. In our use-based approach, we also specify domain
boundaries, but security is concerned with how objects are
used within these boundaries. Practically speaking, this
means that security checks on an object are performed
when it is used (selected), rather than communicated.
The main advantage of the use-based approach is that

security specificationsmay bemore fine-grained; in a com-
munication based approach we are restricted to a whole-
object “what-goes-where” security model, while with a
use-based approach we may be more precise in specify-
ing what methods of an object may be used within various
domains. Our use-based security model also allows “tun-
neling” of objects, supporting the multitude of protocols
which rely on an intermediary that is not fully trusted.
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Figure 1: Grammar for

2.0.2 Casting and weakening

Our language features a castingmechanism, that allows re-
moval of access rights from particular views of an object,
resulting in a greater attenuation of security when neces-
sary. This casting discipline is statically enforced. It also
features weak capabilities, a sort of deep-casting mech-
anism inspired by the same-named mechanism in EROS
[16]. A weakened capability there is read-only, and any
capabilities read from a weakened capability are automat-
ically weakened. In our higher-level system, capabilities
are objects, and any method access rights may be weak-
ened.

2.0.3 Static protection domains

The language is an object-based calculus, where ob-
ject methods are defined by lists of method definitions in
the usual manner. For example, substituting the notation
for syntactic details, the definition of a file object with

read and write methods would appear as follows:

read write

Additionally, every object definition statically asserts
membership in a specific protection domain , so that ex-
panding on the above we could have:

read write

While the system requires that all objects are annotated
with a domain, the meaning of these domains is flexible,
and open to interpretation. Our system, considered in a
pure form, is a core analysis that may be specialized for
particular applications. For example, domains may be as
interpreted as code owners, or they may be interpreted as
denoting regions of static scope—e.g. package or object
scope.
Along with domain labels, the language provides a

method for specifying a security policy, dictating how do-
mains may interact, via user interface definitions . Each
object is annotated with a user interface, so that letting

be an appropriately defined user interface and again ex-
panding on the above, we could have:

read write

We describe user interfaces more precisely below, and il-
lustrate and discuss relevant examples in Sect. 5.

2.0.4 Object interfaces

Other secure capability-based language systems have been
developed [5, 6, 20] that include notions of access-rights
interfaces, in the form of object types. Our system pro-
vides a more fine-grained mechanism: for any given ob-
ject, its user-interface definition may be defined so that
different domains are given more or less restrictive views
of the same object, and these views are statically enforced.
Note that the use-based, rather than communication-based,
approach to security is an advantage here, since the latter
allows us to more precisely modulate how an object may
be used by different domains, via object method interfaces.
For example, imagining that the file objects defined

above should be read-write within their local domain, but
read only outside of it, an appropriate definition of for
these objects would be as follows:

read write read

The distinguished domain label matches any domain, al-
lowing default interface mappings and a degree of “open-
endedness” in program design.
The user interface is a mapping from domains to access

rights—that is, to sets of methods in the associated object
that each domain is authorized to use. This looks some-
thing like an ACL-based security model; however, ACLs
are defined to map principals to privileges. Domains, on
the other hand, are fixed boundaries in the code which may
have nothing to do with principals, The practical useful-
ness of a mechanism with this sort of flexibility has been
described in [3], in application to mobile programs.
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Figure 2: Operational semantics for

3 The language : syntax and se-
mantics

We now formally define the syntax and operational se-
mantics of , an object-based language with state and
capability-based security features. The grammar for
is defined in Fig. 1. It includes a countably infinite set of
identifiers which we refer to as protection domains. The
definition also includes the notation as
an abbreviation for ; hence-
forth we will use this same vector abbreviation method for
all language forms. Read-write cells are defined as prim-
itives, with a cell constructor ref that generates a read-
write cell containing , with user interface . The object
weakening mechanism described in the previ-
ous section is also provided, as is a casting mechanism

, which updates the interface associated with
to map to . The operational semantics will ensure that
only downcasts are allowed.
We require that for any and , the method names

are a subset of the method names in the associated object.
Note that object method definitions may contain the distin-
guished identifier which denotes self, and which is bound
by the scope of the object; objects always have full ac-
cess to themselves via . We require that self never appear
“bare”—that is, the variable must always appear in the
context of a method selection . This restriction en-
sures that cannot escape its own scope, unintentially pro-
viding a “back-door” to the object. Rights amplification
via is still possible, but this is a feature of capability-
based security, not a flaw of the model.
The small-step operational semantics for is defined

in Fig. 2 as the relation on configurations , where
stores are partial mapping from locations to values .
The reflexive, transitive closure of is denoted . If

with the top-level domain for all
all programs, then if is a value we say evaluates to
, and if is not a value and cannot be reduced,

then is said to go wrong. If dom , the notation
denotes the function which maps to and

otherwise is equivalent to . If dom ,
denotes the function which extends , mapping to . All
interfaces are quasi-constant, that is, constant except on
a known finite set (since they’re statically user-defined
with default values), and we write to denote
which has default value , written , and where

for all .
In the send rule, full access to self is ensured via the ob-

ject that is substituted for ; note that this is the selected
object , updated with an interface that confers full ac-
cess rights on the domain of . The syntactic restriction
that never appear bare ensures that this strengthened ob-
ject never escapes its own scope.
Of particular note in the semantics is the myriad of run-

time security checks associated with various language fea-
tures; our static analysis will make these uneccessary, by
compile-time enforcement of security.

4 Types for : the transforma-
tional approach

To obtain a sound type system for the language, we
use the transformational approach; we define a semantics-
preserving transformation of into a target language,
that comes pre-equipped with a sound let-polymorphic
type system. This technique has several advantages: since
the transformation is computable and easy to prove cor-
rect, a sound indirect type system for can be obtained
as the composition of the transformation and type judge-
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Figure 3: The -to- term transformation

ments in the target language, eliminating the overhead of
a type soundess proof entirely. The technique also eases
development of a direct type system— that is, where

expressions are treated directly, rather than through
transformation. This is because safety in a direct system
can be demonstrated via a simple proof of correspondance
between the direct and indirect type systems, rather than
through the usual (and complicated) route of subject re-
duction. This technique has been used to good effect in
previous static treatments of languages supporting stack-
inspection security [12], information flow security [11],
and elsewhere [15].
While we focus on the logical type system in this pre-

sentation, we will briefly describe how the transforma-
tional approach has benefits for type inference, allowing an
algorithm to be developed using existing, efficient meth-
ods.

4.1 The -to- transformation
The target language of the transformation is [18, 19],
a calculus of extensible records based on Rémy’s Pro-

jective ML [13], and equipped with references, sets and
set operations. The language allows definition of
records with default values , where for every label
we have . Records may be modified with
the syntax , such that and

for all other .
The language also allows definition of finite sets of

atomic identifiers chosen from a countably infinite set ,
and cosets . This latter feature presents some practical
implementation issues, but in this presentation we take it at
mathematical face value— that is, as the countably infinite
set . The language also contains set operations , ,
and , which are membership check, union, intersection

and difference operations, respectively.
The -to- term transformation is given in Fig. 3.

For brevity in the transformation we define the following
syntactic sugar:
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Figure 4: type grammar
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Figure 5: Kinding rules for types

fix fix not free in
not free in

The translation is effected by transforming objects
into rows with obj fields containing method transforma-
tions, ifc fields containing interface transformations, and
strong fields containing sets denoting methods on which
the object is not weak. Interface definitions are encoded
as records with fields indexed by domain names; ele-
vated rows are used to ensure that interface checks are total
in the image of the transformation.
Of technical interest is the use of lambda abstractions

with recursive binding mechanisms in — of the form
fix , where binds to fix in — to encode
the self variable in the transformation. Also of techni-
cal note is the manner in which weakenings are encoded.
In a weakened object , the set denotes the
methods which are inaccessible via weakening. In the en-
coding these sets are turned “inside out”, with the strong
field in objects denoting the fields which are accessible.
We define the translation in this manner to allow a simple,
uniform treatment of set subtyping in ; the following
section elaborates on this.
The correctness of the transformation is established by

the simple proof of the following theorem:

Theorem 4.1 (Transformation correctness) If evalu-
ates to then evaluates to . If diverges then
so does . If goes wrong then goes wrong.

4.2 Types for
A sound polymorphic type system for is obtained in
a straightforward manner as an instantiation of
[9, 17], a constraint-based polymorphic type framework.
Type judgements in are of the form ,
where is a type constraint set, is a typing environment,
and is a polymorphic type scheme. The instantiation
consists of a type language including row types [13] and

a specialized language of set types, defined in Fig. 4. To
ensure that onlymeaningful types can be built, we immedi-
ately equip this type language with kinding rules, defined
in Fig. 5, and hereafter consider only well-kinded types.
Note in particular that these kinding rules disallow dupli-
cation of record field and set element labels.
Set types behave in a manner similar to row types, but

have a succinct form more appropriate for application to
sets. In fact, set types have a direct interpretation as a par-
ticular form of row types [19], which is omitted here for
brevity. The field constructors and denote whether
a set element is present or absent, respectively. The set
types and behave similarly to the uniform row con-
structor ; the type (resp. ) specifies that all other
elements not explicitly mentioned in the set type are ab-
sent (resp. present). For example, the set has type

, while has type .
The use of element and set variables and allows for
fine-grained polymorphism over set types.
Syntactic type safety for is easily established in the

framework [17]. By virtue of this property and
Theorem 4.1, a sound, indirect static analysis for is
immediately obtained by composition of the –to–
transformation and type judgments:

Theorem 4.2 (Indirect type safety) If is a closed
expression and is valid, then does not
go wrong.

While this indirect type system is a sound static analy-
sis for , it is desirable to define a direct static analysis
for . The term transformation required for the indi-
rect analysis is an unwanted complication for compilation,
the indirect type system is not a clear declaration of pro-
gram properties for the programmer, and type error report-
ing would be extremely troublesome. Thus, we define a
direct type system for , the development of which sig-
nificantly benefits from the transformational approach. In



Figure 6: Direct type grammar
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Figure 7: Direct type kinding rules

particular, type safety for the direct system may be demon-
strated by a simple appeal to safety in the indirect system,
rather than ab initio.
The direct type language for is defined in Fig. 6.

We again ensure the construction of only meaningful types
via kinding rules, defined in Fig. 7, hereafter considering
only well-kinded types. The most novel feature of
the type language is the form of object types ,
where is the type of any weakening set imposed on the
object, and is the type of its interface. Types of sets
are essentially the sets themselves, modulo polymorphic
features; we abbreviate a type of the form or as .
The close correlation between the direct and indirect

type system begins with the type language: types for
have a straightforward interpretation as types, defined
in Fig. 8. This interpretation is extended to constraints and
typing environments in the obvious manner. In this inter-
pretation, we turn weakening sets “inside-out”, in keeping
with the manner in which weakening sets are turned inside-
out in the -to- term transformation. The benefit
of this approach is with regard to subtyping: weakening
sets can be safely strengthened, and user interfaces safely
weakened, in a uniform manner via subtyping coercions.
The direct type judgement system for , the rules for

which are derived from type judgements for trans-
formed terms, is defined in Fig. 9. Note that subtyping in
the direct type system is defined in terms of the type inter-
pretation, where means that every solution of
is also a solution of . The following definition simplifies
the statement of the SEND rule:

Definition 4.1 holds iff
holds, where fv .

The easily proven, tight correlation between the indirect
and direct type systems is clearly demonstrated via
the following lemma:

Lemma 4.1 is valid iff
is.

And in fact, along with Theorem 4.1, this correlation is
sufficient to establish direct type safety for :

Theorem 4.3 (Direct type safety) If is a closed ex-
pression and is valid, then does not go
wrong.

This result demonstrates the advantages of the transfor-
mational method, which has allowed us to define a direct,
expressive static analysis for with a minimum of proof
effort.
An important consequence of this result is the implica-

tion that certain optimizations may be effected in the
operational semantics, as a result of the type analysis. In
particular, since the result shows that any well-typed pro-
gram will be operationally safe, or secure, the various run-
time security checks— i.e. those associated with the send,
cast, weaken, set and get rules— may be eliminated en-
tirely.

4.2.1 Type inference

The transformational method allows a similarly simpli-
fied approach to the development of type inference. The

framework comes equipped with a type infer-
ence algorithm modulo a constraint normalization proce-
dure (constraint normalization is the same as constraint
satisfaction, e.g. unification is a normalization procedure
for equality constraints). Furthermore, efficient constraint
normalization procedures have been previously developed
for row types [10, 14], and even though set types are novel,
their interpretation as row types [19] allows a uniform im-
plementation. This yields a type inference algorithm for

in the framework. An indirect inference anal-
ysis for may then be immediately obtained as the com-
position of the -to- transformation and type
inference.
Furthermore, a direct type inference algorithm can be

derived from the indirect algorithm, just as direct type
judgements can be derived from indirect judgements. Only
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Figure 8: The -to- type transformation

the syntactic cases need be adopted, since efficient con-
straint normalization procedures for row types may be re-
used in this context— recall that the direct type lan-
guage has a simple interpretation in the type language.

5 Using
By choosing different naming schemes, a variety of secu-
rity paradigms can be effectively and reliably expressed
in . One such scheme enforces a strengthened mean-
ing of the private and protected modifiers in class
definitions, a focus of other communication-based capa-
bility type analyses [4, 21]. As demonstrated in [21], a
private field can leak by being returned by reference
from a public method. Here we show how this problem
can be addressed in a use-based model. Assume the fol-
lowing Java-like pseudocode package , containing class
definitions , , and possibly others, where specifies a
method that leaks a private instance variable:

package begin

class
public

private

protected

class
public

new
private

new
protected

new

end

We can implement this definition as follows. Interpreting
domains as class names in , let denote the set of all
class names in package , and let be
syntactic sugar for . Then, the ap-
propriate interface for objects in the encoding of class

is as follows:

(Recall that all objects automatically have full access to
themselves, so full access for need not be explicitly
stated). The class can then be encoded as an object
factory, an object with only one publicly available method
that returns new objects in the class, and some arbitrary
label :

To encode , we again begin with the obvious interface
definition for objects in the encoding of class :

However, we must now encode instance variables, in ad-
dition to methods. In general, this is accomplished by en-
coding instance variables containing objects as methods

that return references to objects. Then, any selection
of is encoded as get , and any update with is en-
coded set . By properly constraining the interfaces
on these references, a “Java-level” of modifier enforce-
ment can be achieved; but casting the interfaces of stored
objects extends the security, by making objects unusable
outside the intended domain. Let be
sugar for . Using , we may
create a public version of an object equivalent to ,
without any additional constraints on its confinement, as
follows:

Letting , we may create a version of an
object equivalent to that is private with respect to the
encoding of class , using casts as follows:
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We may create a version of an object equivalent to that
is protected with respect to the encoding of package ,
as follows:

Let be defined as follows:

ref set get
ref set get
ref set get set get

get

Then is encoded, similarly to , as:

Given this encoding, if an object stored in is leaked by
a non-local use of , it is unuseable. This is the case be-
cause, even though a non-local use of will return , in
the encoding this return value explicitly states it cannot be
used outside the confines of ; as a result of the definition
of and casting, the avatar of in the encoding has an
interface equivalent to:

While the communication-based approach accom-
plishes a similar strengthening of modifier security, the
benefits of greater flexibility may be enjoyed via the use-
based approach. For example, a protected reference
can be safely passed outside of a package and then back
in, as long as a use of it is not attempted outside the pack-
age. Also for example are the fine-grained interface spec-
ifications allowed by this approach, enabling greater mod-
ifier expressivity— e.g. publicly read-only but privately
read/write instance variables.

6 Conclusion
As shown in [1], object confinement is an essential as-
pect of securing OO programming languages. Related
work on this topic includes the confinement types of [21],
which have been implemented as an extension to Java [3].
The mechanism is simple: classes marked confined must
not have references escape their defining package. Most
closely related are the ownership types of [4]. In fact, this
system can be embedded in ours, albeit with a different
basis for enforcement: as discussed in Sect. 2, these previ-
ous type approaches treat a communication-based mecha-
nism, whereas ours is use-based. One of the main points of
our paper is the importance of studying the use-based ap-
proach as an alternative to the communication-based ap-
proach. Furthermore, our type system is polymorphic,

with inference methods readily available due to its basis
in row types.
Topics for future work include an extension of the lan-

guage to capture inheritance, an important OO feature that
presents challenges for type analysis. Also, we hope to
study capability revocation.
In summary, contributions of this work include a fo-

cus on the more expressive use-based security model, the
first type-based characterization of weak capabilities, and
a general mechanism for fine-grained, use-based security
specifications that includes flexible domain naming, pre-
cise object interface definitions, and domain-specific inter-
face casting. Furthermore, we have defined a static analy-
sis that enforces the security model, with features includ-
ing flexibility due to polymorphism and subtyping, declar-
ative benefits due to readability, and ease of proof due to
the use of transformational techniques.
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