
�� ���� � ����� 	
	�
�� �

��� � ���
�
��
� 	 �
���� ��
����� �� �� �� �

1 ��� ���� �� � � !� �����2

1" #$ %& #'()& *+,'(-',.$ /(,01 234566743 89 :; 8<= ;
2>0?'@& /A -',.$ /(,01†4 B6743 836CDE5F= 8<= ;

G HIJKLMJ N
Specification diagrams are a novel form of graphical notation for specify-

ing open distributed object systems. The design goal is to define notation for specifying
message-passing behavior that is expressive, intuitivelyunderstandable, and that has for-
mal semantic underpinnings. The notation generalizes informal notations such as UML’s
Sequence Diagrams and broadens their applicability to later in the design cycle. In this
paper we show how it is possible to reason rigorously and modularly about specification
diagrams. An Actor Theory Toolkit is used to great advantagefor this purpose.

OPQ RSTUVQ OSP
Specification diagrams are a novel form of graphical notation for specifyingopen dis-
tributed object systems. Our goal is to define notation for specifying message-passing
behavior that is expressive, intuitively understandable, and that has a rigorous under-
lying semantics. Many specification languages that have achieved widespread usage
have a graphical presentation format, primarily because engineers can understand and
communicate more effectively by graphical means. Popular graphical specification
languages include Universal Modeling Language (UML) and its predecessors [16],
Petri nets, and Statecharts [9]. UML is the now-standard set of object-oriented design
notations; it includes several different forms of graphical specification notation. Our

W
Partial funding provided by NSF grants CCR-9312433 and CCR-9619843

†Partial funding provided by ONR grant N00014-94-1-0857, NSF grant CRR-9633419, DARPA/Rome
Labs grant AF F30602-96-1-0300, and DARPA/SRI subcontract17-000042.

aim is a language with similar intuitive advantages but significantly greater expressiv-
ity and formal underpinnings. The language is also designed to be useful throughout
the development process, from an initial sketch of the overall architectureto detailed
specifications of final components that may serve as formal documentation of criti-
cal aspects of their behavior. The underlying communication assumptionswe use
are taken from the actor model: object- and not channel-based naming is used, open
systems are treated explicitly, and message passing is asynchronous, fair, and with
nondeterministic arrival order.

Rather than attempting an overview of the language here, the best introduction is
via examples, which we try to get quickly to. The next section is a briefintroduction to
the underlying actor communication model, and this is followed by a short introduc-
tion to the diagram syntax. The following section shows how specification diagrams
may be used in practice via examples. Then, the actor theory framework and toolkit is
outlined. This is a general framework for defining and reasoning about actor systems.
Following is a section outlining how diagrams may be given operationalmeaning via
an actor theory, and lastly we conclude with an example proof of correspondence be-
tween diagrams. By necessity many technical details are missing from this abbreviated
presentation; see [18] for a more complete exposition. [17] is the initial paper on this
topic.

X YZ[\][^ Y_` Za
We provide a brief overview of the underlying actor basis at this point. The Actor
Theory Section below builds the actor theory framework over this basis.Actors are
distributed, object-based message passing entities. Since actors are object-based, they
each have a uniquename, and actors may dynamically create other actors. Individual
actors independently compute in parallel, and actors only communicate by message
passing. Messages are sent asynchronously, so message send instructionsnever block.
All messages must eventually arrive at their destination, but with arbitrary delay.

To describe interactions with an actor system component we assume given a set
of actor names ab A and a set ofmessages Mb Msg. These constitute anactor
communication basis. Message packetsmpare of the formacM, indicating message
M is sent to actora. Actor names may occur in messages and entities of other kinds
used in modelling actor computation. To determine which names occur we require
that each such setX be equipped with an acquaintances functionacq : X d Pω eAf
giving the finite set of actor names occurring in elements ofX. We also assume that
the set of acquaintances can be renamed without changing the structure or meaning of
such an entity.

Actor systems are intended to model open distributed computation. Thismeans
that the whole system will not be explicitly specified, and the framework must assume
someexternal actorsare interacting with the local system. Additionally, of the local
actors, only some of their names may be known by external entities; these are the
receptionists. We useρ to denote the set of receptionists andχ to for the set of
external actors of an actor system component. The paireρ gχf is called the system
interfaceand we writeSρ

χ to indicate thatS is an open actor system with receptionists
ρ and known external actorsχ.

D

D

Sequence

DD D

Parallel

D D

Fork

new x

New

M

a

Send

... ...

)

)

D D D

Choice Skip

M

a

Receive

M

a

Send-Receive

0..

D

Loop EOD

Rec. var

X

{

D

{

Scope

fresh x

Fresh Constrain

φ ?

Assert

φ !
x := ψ

Assign

D

X

Recursion

hijklm n > *$o ,po?0 ,& ' q,?r /?s t&s*& '$ '0(

An individual “run” of an actor system is modeled by aninteraction path, that is, a
possibly infinite sequence of interactions: inputs,uv eacMf, and outputs,wxy eacMf.
The interface of an interaction path is that of the system. In such a run theset of
receptionists will grow if new local names are sent out in messages and the setof
external actors will grow when previously unknown names are received in messages
from the outside. Theinteraction path lawrequires that a message can only be input
to a receptionist or output to a known external actor.

z{PQG|
In this section we present the syntax of specification diagrams, and an informal de-
scription of their meaning. We use two forms of notation for diagrams, one graphical
and one textual. The graphical one is intended for use in practice: the graphical draw-
ings are highly intuitive. However for mathematical study the textualform is easier
to manipulate. Figure 1 presents the graphical diagram components. Verticallines
indicate progress in time going down, expressing abstract causal ordering on events,

with events above necessarily leading to events below. This causal orderingwill be
termed acausal thread. Note there is no necessary connection between these “threads”
and actors or processes, the threads exist only at the semantic level: a single thread
of causality may be multiple actors, and a single actor may have multiplethreads of
causality. In the figure,D itself may be any diagram, and any two components may be
connected to any other via a vertical line to form a sequenced diagram. Figure 2in the
next section presents some examples.

Before describing the constructs one-by-one, we define the form that the atomic
units may take: diagram state variablesx, constraintsφ, assignmentsψ, message ex-
pressionsmpd, and actor expressionsad. The setXd is the set of diagram state variables
x, y, z, } } } used in diagrams. These variables may take on values in a fixed mathemat-
ical universeU which we do not completely specify. Diagram messagesMsgd are
messagesMsg that may have state variables ocurring in them, and similarlyAd is ei-
ther a state variablex or actor namea. The assignment expressionψ is a function on
U which may refer to variables inXd. Predicates onU are notatedφ. acqeDf, the actor
names known toD, is defined as~u�U �acqeuf u occurs as anMd gad gφ or ψ in D�.

The individual graphical constructs are now informally described. Witheach con-
struct the textual grammatical equivalent is given in parentheses.
sequence (D1;D2) Vertical lines (causal threads) represent necessary temporal se-
quencing of events inD1 before those inD2.
parallel (D1 �D2) Events in parallel diagrams have no causal ordering between them,
but are after events above and before events below.
choice (D1 � D2) One of the possible choices is taken. There is no requirement that
the choice be fair, in the sense that for a particular actor computation thesame branch
could always be taken. Standard if-then-else is easily definable with choice and con-
straints.
fork (�w�� eDf) A diagram is forked off which hereafter will have no direct causal
connection to the future of the current thread (however, messages could indirectly im-
pose some causality between the two).
skip (�� u�) Does nothing.
send (��v� ea c Mf) A message is sent toa with contentsM. There is a requirement
that message delivery be fair, in the sense that any message sent must eventually arrive
at its destination.
receive (����u��eacMf) A message is received by actora, possibly binding pattern
variables in the messageM, which can be used below in the diagram. This statement
blocks until a message arrives matching its pattern. If a message arrives but never
matches any����u��, that message starves, and the computation path is thus consid-
ered unfair and is not admitted.
send-receive (discussed below)A message is sent from one component of the dia-
gram to another, producing a causal cross-connection in what could have been causally
unrelated segments. The edge imposes a strong constraint, because it meansthe sender
must have sent the message to the indicated receiver, and it was explicitly received.
loop (�D�0���∞) The diagram is iterated some numbern times, wheren is nondeter-
ministically chosen from the interval 0} } }∞. The casen � ∞ chosen means it loops
forever. The textual syntax here is not in the core language—it is a macroabbreviat-

ing ���X }eeD;Xf � �� u�f. Loop �D�0���ω is similar but cannot run forever, and�D�∞

must only run forever.
EOD (�w�) Denotes the end of a causal thread in the diagram; expressed by existing
syntax���X }e�� u�;Xf.
scope (�x0 g } } } gxn : D�) Brackets demarcate static scoping of state variables. In the of-
ficial textual syntax explicit variable declarations are given (and the variables initially
given arbitrary values), but by an an implicit convention discussed below,bracketing
alone may be used to define variable extent.
recursion (���X }D, X) A boxed diagram fragment may refer to itself by name,X,
so X occurring inside the box refers to the whole box.X b Xr is a countable set of
recursion variables. Standard while-do syntax may be defined via recursion,choice,
and constraints.
new (v�� exf) State variablex is assigned arbitrary contents.
fresh (����� exf) State variablex is given contents consisting of an actor name not
currently in use.
constraint (�wv �y��uv eφf) An arbitrary constraint is placed on the current thread of
causality, which must be met. There is no direct analogue to this notion of constraint
in programming languages: the constraint may be any mathematical expression, and
a constraint failing does not indicate a run-time error, it indicates that such a compu-
tation path will not arise. This interpretation is analogous to theassumepredicate of
Dijkstra’s predicate calculus [6].
assertion (�����y eφf) An arbitrary assertion is made. Unlike�wv �y��uv, an�����y
that fails indicates failure of some property, and has no programmatic meaning. This
is analogous to Dijkstra’sassertpredicate.
assign(x �� ψ) A variable is dynamically assigned a new value. The assignment body,
ψ, can be any sensible mathematical expression.

We define some syntactic sugar which allows variable declarations at a scope bound-
ary to be implicit: �D� abbreviates�x0 g } } } gxn : D� for x0 g } } } gxn being all state vari-
ables occurring directly inD (not in a deeper lexical level) Certain syntax is easily
encodable via macros and so is not defined in the core grammar:��w�y abbrevi-
ates�wv �y��uv efalsef; ��u� abbreviates�����y efalsef; and,v�� ex� uf abbreviatesv�� exf; �wv �y��uv ex � sf. Translation from graphical diagrams into textual nota-
tion is obtained by inductively replacing the graphical syntax with the corresponding
textual syntax listed above. A global transformation is used to encode the constraint
introduced by cross-edges, a topic we must skip here.

A top-levelspecification diagram includes an interface, notated�D�ρχ. Top-level
diagrams are modules which may be directly given semantic meaning. We will not
always include the phrase “top level” but meaning should be clear from context.

Uz OP� z��V O�OVGQ OSP TOG�RG�z
In this section we aim to illustrate the full range of functionality of the language via
examples. The subsequent sections outline how the meaning of diagrams and asserted
properties of diagrams may be established.

0..ω

Ticker(a) =

a time@x

∇

∇

[0..∞
new(count ∈ Nat)

[

[

[

count := count + 1

x reply(count)

∇

∇

{

{

TickerFactory(a) =

a new@c

∇

∇

[0..∞

[

c reply(t)

∇

∇

{
{

fresh(t)

Ticker(t)

ParTicker(a) =

[∞

new(count = 0)

[
{

{

a tick

∇

∇

count := count + 1

a tick

∇

∇

a tick

∇

∇

a time@x

∇

∇

x reply(count)

∇

∇

[0..∞

[

CountingTicker(a) =

a time@c

∇

∇

[0..∞
new(count = 0)

[

count := count + 1

c reply(count)

∇

∇

{

{

LiveTicker(a) =

a time@c

∇

∇

[0..∞

[

new(count)

c reply(count)

∇

∇

{

{

0..ω

SafeTicker(a) =

a time@c

∇

∇

[0..∞
new(count ∈ Nat, prevcount = 0)

[

[

[

count := count + 1

c reply(count)

∇

∇

{

{

prevcount ≤ count !
prevcount := count

ChoiceTicker(a) = [0..∞

new(count = 0)

[
{

{

a tick

∇

∇

count := count + 1

a tick

∇

∇

a tick

∇

∇

a time@x

∇

∇

x reply(count)

∇

∇

a tick

∇

∇

(

(MonotoneTicker(a) =

a time@c

∇

∇

[0..∞
new(count ∈ Nat, prevcount = 0)

[
c reply(count)

∇

∇

{

{

new(count s.t. prevcount ≤ count)

prevcount := count

hijklm � " ,o +$ / > *$o ,po?0 ,& '(
 ¡` _aa¢^£ ` ¤ ZZ_\^a [¥ ¦ _aa¤£ _ ` ¤aa¢^£
We give here a series of examples illustrating how the constructs of the language may
be used to build interesting specifications.

§¨©ª«¬
A ticker is a simple specification of a monotonically increasing counter

which replies toy u® � messages with its current count value. This example illustrates
the unbounded nondeterminism present in actor computations. A high-level specifica-
tion is as follows. This high-level specification as well as the other ticker examples to
follow appear diagrammatically in Figure 2.

Ticker¯a° ±² ³´µ ¯count¶ Nat°;· · ¸´¹´º»´ ¯a¼ ½º¾ ´@x°; ¿´³À ¯x¼ ¸´ÁÂÃ ¯count°°Ä0ÅÅÅω; count ÆÇ countÈ 1 Ä0ÅÅÅ∞ É
This succinct specification expresses the fact that the count can stay constant for

finitely manyy u® � requests, but then must increment. The meaning of this top-level
diagram,ÊÊ�Tickereaf�a/0ËË, is a setIpTicker of interaction pathsip. The diagram meaning
function ÊÊÌËË is outlined in the Operational Semantics Section below. Figure 2 also
contains the TickerFactory, a factory for producing tickers, which showshow new
actors may be dynamically created via����� and�w��.

ÍÎÏ©Ð¨ÑÏ ÒÑÓÔÑÕ«¬
We define a distributed method for computingg Ö f for

composable functionsf andg: the functions are computed at remote nodes and the
values combined at a third node. For any actor name,a, and functionf bV d W, the
following diagram Feag f f specifies a component that accepts requests toa of the form

∇

∇

F(a,f) =

a compute(x)@xc

∇

∇

[0..∞

[

xc reply(f (x))

{

{

∇

∇

FC(a,af,ag) =

a compute(x)@xc

∇

∇

[0..∞

[

xc reply(z)

{

{

fresh(xf)

af compute(x)@xf

∇

∇

fresh(xg)

ag compute(y)@xg

∇

∇

xf reply(y)

∇

∇

xg reply(z)

∇

∇

XC(a,af,ag) =

a compute(x)@xc

∇

∇

[0..∞

[

xc reply(z)

∇

∇

{

{

fresh(xf)

af compute(x)@xf

∇

∇

fresh(xg)

ag compute(y)@xg

∇

∇

xf reply(f (x))

∇

∇

xg reply(g (f ((x)))

∇

∇

[0..∞

[
{

{

[0..∞

[
{

{

hijklm × ØÙ'o0 ,& ' t&s*&($ / > *$o ,po?0 ,& '(
�w®�xy�evf@c and sends toc a ����Ú e f evff.

F¯aÛ f ° ± ²
xÛxc :

·̧ ´¹´º»´ ¯a¼ ¹Ü¾ÁÝ½´ ¯x°@xc°; ¿´³À ¯xc¼ ¸´ÁÂÃ ¯ f ¯x°°°Ä0ÅÅÅ∞É
Graphical diagrams of this and the other function composer examples are given in

Figure 3. For any actor namesagaf gag, FCeagaf gagf specifies a component that ac-
cepts requests toa of the form �w®�xy�evf@c, asksaf to �w®�xy� on v, and then
asksag to �w®�xy� on the result fromaf , sending that result toc.

FC¯aÛaf Ûag° ± ² ·¸´¹´º»´ ¯a¼ ¹Ü¾ÁÝ½´ ¯x°@xc°;Þ¸´¿ß ¯xf °; ¿´³À ¯af ¼ ¹Ü¾ÁÝ½´ ¯x°@xf °;¸´¹´º»´ ¯xf ¼ ¸´ÁÂÃ ¯y°°; Þ¸´¿ß ¯xg°; ¿´³À ¯ag¼ ¹Ü¾ÁÝ½´ ¯y°@xg°;¸´¹´º»´ ¯xg¼ ¸´ÁÂÃ ¯z°°; ¿´³À ¯xc¼ ¸´ÁÂÃ ¯z°°Ä0ÅÅÅ∞ É
The fresh namesxf andxg are private names FC sends as the customer to the target

only; the target is to reply to this name, guaranteeing the reply came from the target or
the target’s accomplice. Thus in a context whereaf is the name of anf computer and
ag is the name of ag computer, FC composesaf andag to become ag Ö f computer.
Ceag f gggaf gagf puts FC in such a context:

C¯aÛ f ÛgÛaf Ûag° ± ¯FC¯aÛaf Ûag° àF¯af Û f ° àF¯agÛg°°
XCeag f gggaf gagf of Figure 3 is nearly identical to Ceag f gggaf gagf, with the excep-
tion that the send and receive edges are connected cross-edges. This may not seem
like much of a difference, but the cross-edge diagram makes a much stronger asser-
tion about the message-passing behavior in that it constrains how sendsand receives
must line up at run-time. This is the main reason for the presence of send-receive
cross edges in the diagram syntax. XC is thus a higher-level specification,and C is an
equivalent one closer to implementation.

á_â¤ Z¢^£ ã` _Y¢ä Y¤ Z¢[^ å¢¤£\¤¦ a
In this section, terminology for when an implementation satisfies a specification will
be informally introduced. For this we need a useful notion of�DI �ρχ �� �DS�ρχ (imple-
mentationDI satisfies specificationDS). Two concrete notions of satisfaction are now
presented.

æÑÑÕ« çèÐ¨Õéè©Ð¨ÑÏ
The standard notion of satisfaction in the literature is that

the implementation refines the specification. We term thisloose satisfaction. In al-
gebraic specification for example [20], this is the only relation defined to assert an
implementation meets a specification.

This form of satisfaction is a subset relationship on interaction path behaviors:

Definition 1 (loose satisfaction): �DI �ρχ �� �DS�ρχ iff ÊÊ�DI �ρχËË ê ÊÊ�DS�ρχ ËË.æÑÑÕ« çèÐ¨Õéè©Ð¨ÑÏ èÏë Ðì« § ¨©ª«¬
Loose specifications may easily be writ-

ten in specification diagrams. Consider for instance the LiveTickereaf of Figure 2.
This specification of the ticker only specifies that all time requests receive a reply. The
loose satisfaction relation�Tickereaf�a/0 �� �LiveTickereaf�a/0 then is in effect asserting
the liveness of the Ticker. Diagrams are in fact extremely useful as a means whereby
properties of specifications may be asserted, a topic that will be addressed more fully
shortly.

Another important use of loose satisfaction is in cases when it is necessaryto have
an implementation more deterministic than the specification. An example is the
CountingTickereaf of Figure 2. This implementation replies with a number one bigger,
loosely satisfying the Ticker specification:�CountingTickereaf�a/0 �� �Tickereaf�a/0.

çÐ¬ÑÏí çèÐ¨Õéè©Ð¨ÑÏ
For an implementation to fully and faithfully satisfy a spec-

ification, the two must have the same sets of interaction paths, i.e., their observable
behavior to the environment is identical. This isstrongsatisfaction, an equivalance.

Definition 2 (strong satisfaction): �DI �ρχ ��� �DS�ρχ iff ÊÊ�DI �ρχËË � ÊÊ�DS�ρχËË.
çÐ¬ÑÏí çèÐ¨Õéè©Ð¨ÑÏ Ñé Ðì« ÍÎÏ©Ð¨ÑÏ ÒÑÓÔÑÕ«¬

A good example of strong
satisfaction is found in the context of the function composer exampleabove. A high-
level specification for computinggÖ f is just FeaggÖ f f which directly computesgÖ f .
We may then assert the following.

Theorem 3. �Ceag f gggaf gagf�a/0 ��� �Feagg Ö f f�a/0
This Theorem will be proved in the penultimate Section. The proof shows how it

is possible to rigorously reason about diagrams.

çÐ¬ÑÏí çèÐ¨Õéè©Ð¨ÑÏ î ï«ÕÐ¬¨©Ð¨ÑÏ î èÏë Ðì« § ¨©ª«¬
A more low-level spec-

ification of the ticker could sendy u�� messages to itself to increment the counter:
every time it receives ay u��, it increments the counter and sends itself anothery u��.
One possible manner of writing this is the ChoiceTicker of Figure 2.Another
reasonable alternative is to use parallelism between they u�� and y u® � instead of
nondeterministic choice, the ParTicker of Figure 2. The Ticker, ChoiceTicker, and

ParTicker are close to being equivalent specifications. However, the Ticker does not
accepty u�� messages, so it is in fact slightly different. Nonetheless, in a context
where actora receives onlyy u® � messages, all three are equivalent. For this pur-
pose we use a restriction operator to restrict interactions to relevant paths. LettingV
be �a c y u® �@c c b A andc ð� a�, the notation�ChoiceTickereaf�a/0 ñV indicates the
top-level diagram in a context where input messages are fromV only.

Theorem 4. �ChoiceTickereaf�a/0 ñV ��� �ParTickereaf�a/0 ñV ��� �Tickereaf�a/0 }
Note that�Tickereaf�a/0 ñV ��� �Tickereaf�a/0, since Tickereaf does not accepty u��

messages,

Xaa_\ Z¢^£ ò\[` _\ Z¢_a [¥ ã` _Y¢ä Y¤ Z¢[^a å ¢¤£\¤¦¦ ¤Z¢Y¤ââó
Safety and liveness properties can be asserted directly in the specification diagram
language. We present three different techniques for asserting safety and liveness prop-
erties diagrammatically. The first method is based on loose satisfaction. The second is
based on diagrammatically defining an environment which enforces the specification
to have the proper behavior. The third method is by directly decorating the specifica-
tion with logical assertions.

The first method is as follows. The underlying idea is that a predicate (such as a
liveness condition) can be defined by a diagramPD eipf iff ip b ÊÊ�D�ρχËË. The asser-
tion that all behaviors of a particular diagramDô have the propertyPD is then just�Dô �ρχ �� �D�ρχ.

An example of this method was in fact given earlier: the property that that ally u® � messages sent to the Ticker will receive a reply was expressed by the LiveTicker
specification, and the statement�Tickereaf�a/0 �� �LiveTickereaf�a/0 asserts the Ticker
has such a property. It is trivial to show that LiveTicker responds to alltime messages,
so satisfaction of this specification is the liveness argument.

A second and perhaps more convincing way to assert liveness is by specifying
an environment which enforces liveness. For the Ticker, the environment should as-
sert that ally u�� requests are handled. The�����y predicate is used for this pur-
pose (more precisely the��u� macro, defined as�����y efalsef) in the following
LiveTickerEnvt:

LiveTickerEnvt̄ a° ± ·Þ¸´¿ß ¯c°; ¿´³À ¯a¼ ½º¾ ´@c°; ¯¸´¹´º»´ ¯c¼ x° õ ¯ÞöºÂ ;
´ÜÀ°°Ä0ÅÅÅ∞

Failure arises only when there is ay u® � request that does not get answered – the����u�� choice is never possible and so failure is the only possibility. Iffailure were
chosen when there was in fact a reply to be received, that path would be unfair because
a message was never received. We then assert�� �Tickereaf �LiveTickerEnvteaf� /0

/0,
which means there are no paths of this combined system which contain a��u� event.

Safety properties are properties that hold at certain points in execution. As with
liveness, safety can both be asserted by showing the specification satisfies an abstract
specification which obviously has safety. The third manner in which properties may
be diagrammatically asserted is that safety properties may be directly asserted in the
specification itself via�����y decorations. An example of a specification decorated
with a safety assertion is a ticker which asserts successive outputs are non-decreasing.

caller exchange receiver

lift receiver

dial tone

dial digit

route

phone ringsringing phone

answer phone

stop phone stop ringing

. . .

(* caller c *) (* exchange e *) (* receiver r *)

e lift-receiver

dial-tone

dial-digit

phone-ringsringing-phone

answer-phone

stop-phone stop-ringing

∇

∇

route
e

∇

∇

e

∇

∇

r

∇

∇

∇

∇

∇

∇

r

∇

∇

∇

∇

∇

∇

c

∇

∇

∇

∇

∇

∇

c

∇

∇

∇

∇

∇

∇

c

∇

∇

∇

∇

∇

∇

e

∇

∇

. . .

PhoneRoute(c,e,r) =

hijklm ÷ ø -ùú >$û Ù$ 'o$ q,?r /?s ?'A ,0(t& //$(*& 'A ,'r > *$o ,po?0 ,& ' q,?r /?s

Then, the safety assertion is�� �SafeTickereaf�a/0, for SafeTicker of Figure 2. The
ability to express assertions diagrammatically means there is less need to learn a spe-
cialized logic in which assertions are written.

][¦` ¤\¢a[^ ü¢ Zý þÿ� ã_��_^ Y_ å¢¤£\¤¦ a
Specification diagrams were partly inspired by UML sequence diagrams [16] (to be
specific, by an early version known as a message trace diagram [15]), and the two
share concepts. However, sequence diagrams are primarily designed to show possible
scenarios of execution, and not to give all possible scenarios. They are primarily for
informal design and not rigorous specification.

The left diagram of Figure 4 is a UML sequence diagram which is presented in [4]
(we have removed temporal constraints since specification diagrams are not real-time).
On the right side is the same example re-expressed as a specification diagram. This
example also brings out the usefulness of the send-receive cross-edges in specification
diagrams. An approximate analogy of features and properties is found in the follow-
ing list of “Sequence diagrams::specification diagrams” analogies: parallel vertical
lifelines::parallel construct; split and merged lifelines::choice; asynchronous and syn-
chronous messaging::asynchronous basis; incomplete informal semantics::complete,
rigorous semantics; (not present)::usefulness as a logic for asserting properties; (not
present)::explicit open systems modeling; activation/focus of control::(none – funda-
mentally concurrent); real-time constraints::(none currently); practical language::research
language.

GP GVQSR Q��SR{ �RG���SR�
In this section we briefly review the semantic framework used to model actor systems;
this framework will then be used to give semantics specification diagrams,to define
satisfaction relations both between pairs of specification diagrams and to reason about
these relations. More detail about the framework can be found in [19, 13].

X YZ[\ Zý _[\¢_a
The actor theory framework is a general mathamatical framework for defining and
reasoning about the semantics of actor systems. It can be used to define operational
semantics for actor programming languages or the specification diagram language (a
main use here). But also very specialized actor theories may be defined, describingthe
behavior of one particular fixed actor system, for instance a “Ticker” actor theory. The
principle effort in defining an actor theory is the definition of a set of reaction rules
that describe how an actor system evolves internally. The framework then specifies
the interaction paths induced by that rule set.

� ©ÐÑ¬ Ðì«Ñ¬� ÕÐ¬Î©ÐÎ¬«
An actor theory contains an actor communication ba-

sis that provides sets ofactor names, andmessagesequipped with acquaintance and
renaming functions as described in the Introduction. It provides, in addition, a set of
actor statesand a set oflabelled reaction rules. An actor stateσ b Sdescribes a state
of a group of one or more actorsiactseσf : Pω eAf called theinternal actors.

Reaction rule labels are used in deriving a labelled transition system semantics.
Labels l b L are equipped with four functions determining the (existing and new)
actors and message packets participating in a transition. ThefocusactorsfActself :
Pω eAf and received packetsrMPself : Mω eMPf are calledtriggers, elements that must
be present for a rule with labell to apply. The created actorscActself : Pω eA f and sent
packetssMPself : Mω eMP f are theeffectsof applying a rule with labell. For any
label, the targets of received packets must be members of the focus actor set.

Reaction rulesRRdetermine how the group as a whole evolves and responds to

incoming messages. Each reaction rule is of the forml : σ0
fA�µr		d
cA�µs

σ1 wherefA �
fActself, cA� cActself, µr � rMPself, andµs � sMPself. We omit mention offActself
if it is the set of internal actors ofσ0 and also omit mention of empty sets of created
actors, received or sent message packets The set of rules must satisfy the fundamental
actor locality laws of [1, 3].

Ô «¬èÐ¨ÑÏè � Õ«ÓèÏÐ¨©Õ Ñé èÏ è©ÐÑ¬ Ðì«Ñ¬�
The operational semantics of an

actor theory is given by a labelled transition relation on actor system configurations.
A configuration has an interface and an interior. Aconfiguration interior, I , is a state
together with a multiset of message packets, called theundeliveredmessages. We
write �σ gµ� for the interior with stateσ, and undelivered messagesµ and I ρ

χ for the
configuration with interiorI and interfaceeρ gχf. The receptionists of a configuration
must be a subset of the internal actors (of the state), the interface externals must be
disjoint from the internal actors, and the acquaintances of the interior that are not
internal actors must be a subset of the externals.

Configurations evolve either by internal computation according to the reaction
rules, or by interaction with the environment. The transition rules are defined as
follows.
Definition 5 (Transition rules):

(internal) �σ0 Ûµ µr � ρ
χ

l�� �σ1 Ûµ µs�ρ
χ if l : σ0

fA�µr���
cA�µs

σ1 ¶ RR� cA� ¯acq¯µ° � χ° ± /0

(in) �σ Ûµ� ρ
χ

�� �
a�M������� �σ Ûµ a¼M� ρ

χ� �acq
�
M��ρ� if a ¶ ρ � acq¯M° � iacts¯σ° � ρ

(out) �σ Ûµ a¼M� ρ
χ

��� �a�M������� �σ Ûµ� ρ� �acq
�
M��χ�

χ if a ¶ χ

The setP of computation paths is the set infinite sequences of transitions of the

form π � ÊKi
tli	d Ki 1 i b NatË. A computation segment is a finite segment of a

computation path.

ÒÑÏÕÐ¬è¨Ï«ë � ©ÐÑ¬ §ì«Ñ¬¨«Õ èÏë !ÏÐ«¬è©Ð¨ÑÏ ç«ÓèÏÐ¨©Õ
A constrained

actor theory,cATh, is an actor theoryAThtogether with a subsetA of the computation
paths that are considered admissible in the derived interaction semantics. We write�AThgA � for the constrained actor theory with underlying actor theoryAThand admis-
sible pathsA ê P . Admissibility can express notions of fairness, or require paths to
be in a certain canonical form, or even express constraints on what the environment is
allowed to do.

Interaction semantics gives a more abstract view of an actor system, specifying only
the possible patterns of interaction that a system can have with its environment. The
interaction semanticsÊÊK : cAThËË of a configurationK in a constrained actor theory
cATh is the set of interaction paths associated with admissible computations of K.
The interface of the interaction pathip associated with a computation pathπ is that
of the initial configuration ofπ and its interaction sequence is the subsequence of
input/output transition labels ofπ. Thus it hides internal state and transitions. When
the constrained actor theorycAThis clear from context we write simplyÊÊKËË.
"` _\¤ Z¢[^a [^ X YZ[\ Zý _[\¢_a
There are many operations for moving between generalized and specialized actor the-
ories, and for combining theories to make richer theories. These operations allow us
to move around in the space of actor theories in semantically meaningful waysand
serve as an important part of a toolkit for reasoning about actor system components.
Here we describe only what is needed in our example of reasoning about specification
diagrams: isomorphism, state restriction, product, and localization.

!ÕÑÓÑ¬Ôì¨ÕÓ
Two (constrained) actor theories areisomorphicif there are bijec-

tions between their states and rules such that corresponding rules have corresponding
states and the same triggers and effects, and such that the bijections lift toa bijection
between the admissible paths that preserves interaction labels.

Lemma 6 (iso): If cATh0 andcATh1 are isomorphic andK0 : cATh0 corresponds to
K1 : cATh1, then ÊÊK0 : cATh0ËË � ÊÊK1 : cATh1ËË.
çÐèÐ« ¬«ÕÐ¬¨©Ð¨ÑÏ

Restricting an actor theory to use a subset of its states allows
us to move from a general to a more specific theory. LetAThbe an actor theory and let
S0 ê Sbe a subset of the states ofATh. The restrictionAThñS0 of AThto S0 is obtained
by closingS0 under rules and renaming and then restricting all operations and rules to
the resulting set of states. IfcATh� �AThgA � is a constrained actor theory andS0 ê S,

then the state restriction ofcAThgiven bycAThñS0 � �AThñS0 gA ñS0� whereA ñS0 is
the restriction ofA to computations ofAThñS0.

Lemma 7: State restriction preserves interaction semantics: ifS0 ê SandK is a con-
figuration ofcAThñS0f, then ÊÊK : cAThñS0ËË � ÊÊK : cAThËË }
¬ÑëÎ©Ð

The product of two actor theoriescATh0, cATh1 (over the same set of
actor names and messages) is the actor theorycATh0 $cATh1 formed as follows: the
states of the product theory are pairs of stateseσ0 gσ1f b S0 $S1 with disjoint inter-
nal actors; the reaction rules of the product theory are the union of the rules of the
component theories lifted to pairs by acting on the appropriate component; and the
admissible pathsA01 of the product theory are those paths that project to admissible
paths in the component theories. A useful property of product is that itcommutes
with interaction semantics preserving transformations.

Lemma 8: Let cAThj , cAThôj , andK j � �σ j gµj � ρ j
χ j

be s.t.ÊÊK j : cAThj ËË � ÊÊK j : cAThôj ËË
for j % 2. Assumeiactseσ0f & iactseσ1f � /0 and letρ � ρ0 ' ρ1, χ � χ0 ' χ1

	 ρ, and
K � �eσ0 gσ1f gµ0 Ìµ1� ρ

χ. Then ÊÊK : cATh0 $cATh1ËË � ÊÊK : cAThô0 $cAThô1ËË.æÑ©è �¨(¨Ïí Ó «ÕÕèí«Õ
When actor systems are combined, many interactions with

the environment become internal exchanges of messages that are no longer visible in
the interaction semantics. This happens for example when the product of two or more
actor theories is formed. We can make these interactions silent in the computation path
semantics by applying thelocalizationtransformation. The localizationLoceAThf of
an actor theoryATh is obtained by adding an internal mail buffer to each state and
putting messages sent by internal actors to internal actors in this buffer directly rather
than in the undelivered message setsµ. The rules are correspondingly modified to
take messages both from the internal buffer and from the undelivered message set.
Localization lifts naturally to computation paths and the admissible paths of a local-
ized constrained actor theory are the localizations of admissible paths of the original
theory.

Lemma 9 (Localization): Let cAThbe a constrained actor theory with configuration
K, andK ô be a corresponding localized configuration ofLocecAThf; then,ÊÊK : cAThËË �ÊÊK ô : LocecAThfËË }
S ��RGQ OSPG) z��GPQ OVz S � TOG�RG�z
Diagrams are given meaning via an operational semantics, sketched here. The goal
is to give a set of interaction pathsÊÊ�D�ρχËË defining the behavior of top-level dia-
grams�D�ρχ. This is accomplished by defining a constrained actor theorycSDTh��SDThgAsd�. which specifies the computation paths of diagrams. To define the dia-
gram actor theory,SDThthe obligations are to define the states and reaction rules. For
the constrained diagram actor theorycSDThthe admissibility predicate,A

sd must also
be defined.

Definition 10 (SDTh): The states ofSDThare of the formσ � ��D g iA ��, whereD is
a diagram syntactically indicating the current state of execution, andiA are the actors

defined as internal toD. The acquaintance and internal actors operations are defined
by acqe��D g iA ��f � acqeDf ' acqeiAf, andiactse��D g iA ��f � iA. The labelled reaction
rulesRRsd are a rigorous version of the informal descriptions given in the Syntax
section.

See [18, 17] for the complete rulesetRRsd. Here we illustrate the rules via an exam-
ple computation. Recall the function composer system FC of the Examples Section.
We will show one complete pass through the loop. For this purposewe define two
additional diagrams that correspond to correspond to positions in theunfolding of the
inital state diagram using the environmentγ to specify currently bound variables. Let
γ contain the bindings�x *d vgy *d wgxc *d cgxf *d cf gxg *d cg� and we define

FC1̄ aÛaf ÛagÛγ° ± ²
x +� vÛxc +� cÛxf +� cf :¸´¹´º»´ ¯xf ¼ ¸´ÁÂÃ ¯y°°;Þ¸´¿ß ¯xg°; ¿´³À ¯ag¼ ¹Ü¾ÁÝ½´ ¯y°@xg°;¸´¹´º»´ ¯xg¼ ¸´ÁÂÃ ¯z°°; ¿´³À ¯xc¼ ¸´ÁÂÃ ¯z°°;FC¯aÛaf Ûag°É

FC2̄ aÛaf ÛagÛγ° ± ²
x +� vÛxc +� cÛxf +� cf Ûy +� wÛxg +� cg :¸´¹´º»´ ¯xg¼ ¸´ÁÂÃ ¯z°°; ¿´³À ¯xc¼ ¸´ÁÂÃ ¯z°°;FC¯aÛaf Ûag°É

In each state the internal actorsagA consists of the initially present actora and the
actors created to receive repliesA.

An example of reaction steps via the reaction rules is then (recalling�D�0���∞ ab-
breviates���X }eeD;Xf � �� u�f) is:

�àFC¯aÛaf Ûag° Û aÛAà�,-.�X������ ./��0-�l ������� ,-.-�1-�a�.�23��-�v�@c������������������ 0-4��� 5,-0/ �.5 �������� 0-4��� 0-�6 �af�.�23��-�v�@cf ����������������� 0-4���
�àFC1̄ aÛaf ÛagÛγ1° Û aÛcf ÛAà� where γ1 ± ²

x +� vÛxc +� cÛxf +� cf É
�àFC1̄ aÛaf ÛagÛγ1° Û aÛcf ÛAà� ,-.-�1-�cf�,-378 �w���������������� 0-4��� 5,-0/ �.9�������� 0-4��� 0-�6�ag�.�23��-�w�@cg����������������� 0-4���
�àFC2̄ aÛaf ÛagÛγ2° Û aÛcgÛcf ÛAà� where γ2 ± γ1

²
y +� wÛxg +� cgÉ

�àFC2̄ aÛaf ÛagÛγ2° Û aÛcgÛAà� ,-.-�1-�cg�,-378 �u���������������� 0-4��� 0-�6�c�,-378�u������������� 0-4���
�àFC¯aÛaf Ûag° Û aÛcgÛAà�
The��: steps in the above moves on to the next diagram expression in the sequence.

Lemma 11: SDThas defined above is an actor theory.
We now define the admissibility predicate to give a constrained actor theory. Recall

from the definitions that in the actor theorySDTh, configurationsK are of the form���D g iA �� gµ� ρ
χ. Thus computation pathsπ b P are of the form

π ± ;��àDi Û iAi à� Ûµi �ρi
χi

tl i�� ��àDi<1 Û iAi<1 à� Ûµi<1� ρi= i
χi=1

i ¶ Nat> ?
Definition 12 (cSDTh): cSDThis defined as the constrained actor theory�SDThgAsd�
whereA

sd, the admissibility predicate on paths, is defined the restriction to paths
which (1) do not get stuck at any point (for instance by failing a�wv �y��uv or waiting
for a message that never arrives) and (2) eventually process all messages inµ.

Given the definitions of the reaction rules and admissibility predicate, it is now
possible to “turn the crank” using the actor theory framework of the Actor Theory
Framework Section and produce interaction semantics for diagrams:

Definition 13: The interaction path semantics of a top-level diagram,ÊÊ�D�ρχËË, is then
defined asÊÊ����D�g dInActseD gρ gχf �� g /0� ρ

χ : cSDThËË, where the initial internal actors
dInActseD gρ gχf � eρ ' acqeDf 	 χf.

Diagrams that contain�����y may be checked to determine whether the assertions
are valid in all paths.

Definition 14: A diagram is (truth-) valid,�� �D�ρχ, iff there are noπ b A
sd with initial

configuration����D�g dInActseD gρ gχf �� g /0� ρ
χ that contain an�����y efalsef-labelled

transition.

ÒèÏÑÏ¨©è � èÏë @ è©¬ÑAçÐ«Ô ÍÑ¬Ó Õ
We next develop simplercanonical forms

for diagram computations to make it easier to reason about them.As the operational
semantics is currently structured, atomic computation steps such as��:, ��ww��, and��� are very small units of work. When reasoning about parallel threads, at first
glance all possible interleavings of such steps need to be considered. To reduce the
number of interleavings, we group atomic steps intobig steps, a path segment consist-
ing of atomic steps which can without loss of generality be performed in immediate
sequence. Thecanonical form computationsare those that only perform maximal big
steps. Steps beyond the trivial ones listed may also be grouped in big steps. The gen-
eral criterion is that a big step must be oblivious of any steps that couldbe interleaved
in parallel with its execution. We definecSDThcan ascSDThwith the canonical com-
putations compressed together into macro steps. As an example of a macro step
transition incSDThcan, we revisit the FC example execution covered previously, in
macro-step form:

�àFC¯aÛaf Ûag° Û aÛAà� a�.�23��- �v�@c�������������
cf �af�.�23��-�v�@cf

�àFC1¯aÛaf ÛagÛγ1° Û aÛcf ÛAà�
where γ1 ± ²

x +� vÛxc +� cÛxf +� cf É
�àFC1¯aÛaf ÛagÛγ1° Û aÛcf ÛAà� cf�,-378 �w���������������

cg�ag�.�23��-�w�@cg
�àFC2̄ aÛaf ÛagÛγ2° Û aÛcgÛcf ÛAà�

where γ2 ± γ1
²
y +� wÛxg +� cgÉ

�àFC2¯aÛaf ÛagÛγ2° Û aÛcgÛAà� cg�,-378 �u���������
c�,-3 78�u� �àFC¯aÛaf Ûag° Û aÛcgÛAà�

Notice how multiple transitions are replaced by single macro-steps here.Each macro
step can have arbitrary internal steps, and at most one receive followed by anynumber
of sends.

When reasoning about specification diagrams it is most convenient to specializean
actor theory for the particular diagram under study. So while up to now we have had a
singleactor theorycSDThfor all specification diagrams, we now definedifferentactor
theories specialized only to a particular diagram execution. For this purpose we define
the operation∆e��D g iA ��f that specializescSDThcan to just the states reachable from
initial state��D g iA ��.
Definition 15 (specializing): ∆e��D g iA ��f � ecSDThcanf ñ��D g iA ��.
Lemma 16: ���D g iA �� g /0� ρ

χ : cSDTh ��� ���D g iA �� g /0� ρ
χ : ∆e��D g iA ��f.

In general, the parallel diagram constructionD0 � D1 is not compositional with
respect to the interaction semantics, because bothD0 andD1 may specify����u��
actions for the same actor. In the case that two diagrams����u�� on disjoint sets of
actor names then the parallel composition of the diagrams corresponds to the product
operation on the associated actor theory. We writeD0 Bc D1 to indicate this disjointness
property.

Lemma 17 (parallel-product): If D0, D1 are specification diagrams such thatD0 Bc
D1 and iA0, iA1 are disjoint and contain the receiving actors forD0, D1 respectively,
then

���D0 �D1 g iA0 ' iA1 �� gµ� ρ
χ : cSDTh ��� �e��D0 g iA0 �� g ��D1 g iA1 ��f gµ� ρ

χ : cSDTh$cSDTh

for µ, ρ, χ such that the configurations are well formed.

�RSC OP� z��V O�OVGQ OSPz VSRR�z�SPT
We now show how the techniques developed above may be used to establish prop-
erties of diagrams. An important form of reasoning about diagrams is to show that
a simple, high-level diagram is equivalent to (strongly satisfied by) adiagram that is
the composition of component diagrams. As a simple example we consider the func-
tion composer presented in the Examples Section. We show how the purely local
computation ofg Ö f is equivalent to the distributed implementation. This is The-
orem 3 of the Examples Section. To prove the Theorem we must show thatÊÊ�Ceag f gggaf gagf�a/0 ËË � ÊÊ�Feagg Ö f f�a/0ËË.

First we calculate the specializations of the F and FC diagrams to obtain verysimple
actor theory descriptions of the semantics. We then apply lemma 17 that allows us
to represent the parallel composition in Ceag f gggaf gagf by products and lemma 8
that allows us to specialize the individual actor theory descriptions before applying
the product. Finally we apply the localization transformation to the product actor
theory. This yields an actor theory isomorphic to the specialization forFeagg Ö f f
which establishes the theorem.

The specialization∆e��Feag f f g a��f has two states,��Feag f f g a�� and ���� u� g a��, and
two rules:

�àF¯af Û f ° Û aà� �� �à¿D ºÁ Û aà�
�àF¯af Û f ° Û aà� a�.�23��-�v�@c�����������

c�,-378 � f �v�� �àF¯af Û f ° Û aà�
Note that the construction of this actor theory is uniform in the parametersaf g f .

The specialization for the function composer∆e��FCeagaf gagf g agaf gag��f has four
families of states and four rules. The states are: the initial state��FCeagaf gagf g agA��;
the final state���� u� g agA��; and two intermediate states��FC1eagaf gaggγf g agA�� and��FC2eagaf gaggγf g agA��. In each state the internal actorsagA consists of the initially
present actora and the actorsA created to receive replies. The intermediate diagrams
FC1 and FC2 were given as part of the computation example of the previous section.
The rules of∆e��FCeagaf gagf g a��f are ��FCeagaf gagf g agA�� 	d ���� u� g agA�� plus the
three FC transitions used to illustrate macro steps in the previous section.

Now consider the composition Ceag f gggaf gagf defined above. By lemmas 17 and
8, we have

�C¯aÛ f ÛgÛaf Ûag°�a/0 : cSDThà±à¯�àFC¯aÛaf Ûag° Û aà� Û �àF¯af Û f ° Û af à� Û �àF¯agÛg° Û agà�° a
/0 :¯∆¯�àFC¯aÛaf Ûag° Û aà�° E∆¯�àF¯af Û f ° Û af à�° E∆¯�àF¯agÛg° Û agà�°°

We localize the product theory giving a theory with states of the form

�àCC0F�3 Û aÛaf ÛagÛAà� ± ¯�à¿D ºÁ Û aÛAà� Û �à¿D ºÁ Û af à� Û �à¿D ºÁ Û agà� Û /0°
and

�àCCG ¯aÛaf ÛagÛ f ÛgÛγ Ûµ° Û aÛaf ÛagÛAà� ±¯�àFCG ¯aÛaf ÛagÛγ° Û aÛAà� Û �àF¯af Û f ° Û af à� Û �àF¯agÛg° Û agà� Ûµ°
whereH is the empty string, 1, or 2 and in the empty string caseγ is not relevant. Also
µ contains messages to actors in�af gaggA�, but not toa. Taking the starting state to
be ��CCeagaf gagg f ggg /0 g /0f g agaf gag�� the restricted set of states and rules is as follows.

�àCC¯aÛaf ÛagÛ f ÛgÛI Û /0° Û aÛaf ÛagÛAà� �� �àCC0F�3 Û aÛaf ÛagÛAà�
�àCC¯aÛaf ÛagÛ f ÛgÛ /0 Û /0° Û aÛaf ÛagÛAà� a�.�23��-�v�@c�����������

cf�àCC1̄ aÛaf ÛagÛ f ÛgÛγ1 Ûaf ¼ ¹Ü¾ÁÝ½´ ¯v°@cf ° Û aÛaf ÛagÛcf ÛAà� ���àCC1̄ aÛaf ÛagÛ f ÛgÛγ1 Ûcf ¼ ¸´ÁÂÃ ¯ f ¯v°°° Û aÛaf ÛagÛcf ÛAà� ��
cg�àCC2̄ aÛaf ÛagÛ f ÛgÛγ2 Ûag¼ ¹Ü¾ÁÝ½´ ¯ f ¯v°°@cg° Û aÛaf ÛagÛcf ÛcgÛAà� ���àCC2̄ aÛaf ÛagÛ f ÛgÛγ2 Ûcg¼ ¸´ÁÂÃ ¯g¯ f ¯v°°°° Û aÛaf ÛagÛcf ÛcgÛAà� �����������

c�,-378�g� f �v����àCC¯aÛaf ÛagÛ f ÛgÛI Û /0° Û aÛaf ÛagÛcf ÛcgÛAà�
We collapse the receive, silent, and send steps to a single big-step usinga variant

of the big-step transform and the result is an actor theory that is then isomorphic to
∆e��Feagg Ö f f g a��f, completing the proof.

R�)GQ�T �SR�
A wide variety of notations for concurrent/distributed system specification have been
proposed. Specification diagrams share features with many different schoolsbut are
still quite separate from existing schools. We very briefly review some of the related
approaches here.

Specification diagrams are most closely related to other forms of message-passing
diagram, diagrams with vertical lines for processes/threads, and horizontallines for
messages. Message passing diagrams have a long history in software specification
and are now most widely known as UML Sequence Diagrams [16]. The Examples
Section gave a detailed contrast between specification diagrams and sequence dia-
grams. In the actor model, event diagrams [8, 10, 3] graphically model scenarios of
actor computation by message-passing edges between actors, and were another source
of inspiration for this work.

Specification diagrams also share commonalities with other approaches to precise
specification. Process algebra notation may be used to formally specify the communi-
cation actions of concurrent systems. Parallel composition and choice is of asimilar
sort in specification diagrams and process algebra. Message send and receive is partly
analogous to the related concepts in the asynchronousπ-calculus [11]. A number of
full specification languages based on process algebra have been developed; examples
include LOTOS [2], which is based on CSP; it is now an an ISO standard.

Temporal logic formulae have been extensively used as a means for logical speci-
fication of concurrent and distributed systems [12]. Recently temporal logics for dis-
tributed object based systems have been developed [7, 5]. While such logics express

an extremely broad collection of properties, a significant disadvantage is the need for
large, complex formulae to specify nontrivial systems. Specification diagrams them-
selves can serve the purpose of a logic by directly expressing safety and liveness prop-
erties, as was illustrated by the examples. The use of embedded non-computational
assertions is very similar to forms found in Dijkstra-style weakest precondition logics
for non-concurrent programs [14].

Finite automata are useful for specifying systems which have a strongstate-based
behavior. The Statecharts automata formalism [9] has become particularly popular in
industry. The primary weakness of finite automata is that a complex software system
may not have a meaningful global state.

RJKJ KJLMJI
[1] Henry G. Baker and Carl Hewitt. Laws for communicating parallel processes. InIFIP Congress, pages 987–992. IFIP,

August 1977.

[2] T. Bolognesi and E. Brinksma. Introduction to the ISO specification language LOTOS.Computer Networks and ISDN
Systems, 14:25–59, 1987.

[3] W. D. Clinger. Foundations of Actor Semantics. PhD thesis, MIT, 1981. MIT Artificial Intelligence Laboratory
AI-TR-633.

[4] Rational Software Corporation. UML Notation Guide, version 1.1. September 1997. Obtained From/��3 MNNOOO P,Q� ���Q7 P.�2 .

[5] G. Denker. DTL= : A Distributed Temporal Logic Supporting Several Communication Principles. Technical Report ,
SRI International, Computer Science Laboratory, 333 Ravenswood Ave, Menlo Park, CA 94025, 1998.To appear.

[6] E.W. Dijkstra and C.S. Scholten.Predicate Calculus and Program Semantics, volume 14 ofTexts and Monographs in
Computer Science. Springer-Verlag, 1990.

[7] C. H. C Duarte. A proof-theoretic approach to the design of object-based mobility. In H. Bowman and J. Derrick,
editors,Formal Methods for Open Object-based Distributed Systems,Volume 2, pages 37–53. Chapman & Hall, 1997.

[8] I. Greif. Semantics of communicating parallel processes. Technical Report 154, MIT, Project MAC, 1975.

[9] D. Harel. Statecharts: A visual formalism for complex systems.Science of Computer Programming, 8(3):231–274,
June 1987.

[10] C. Hewitt. Viewing control structures as patterns of passing messages.Journal of Artificial Intelligence, 8(3):323–
364, 1977.

[11] Kohei Honda and Mario Tokoro. An object calculus for asynchronous communication. In Pierre America, editor,
ECOOP, volume 512 ofLNCS, pages 133–147. Springer-Verlag, 1991.

[12] Z. Manna and A. Pnueli.The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer Verlag,
1992.

[13] I. A. Mason and C. L. Talcott. Actor languages their syntax, semantics, translation, and equivalence, 1999. to appear.

[14] Greg Nelson. A generalization of dijkstra’s calculus.TOPLAS, 11:517–561, 1987.

[15] Jim Rumbaugh and Grady Booch.Unified Method for Object Oriented Development, version 0.8. 1996. Obtained
From/��3 MNNOOO P,Q� ���Q7 P.�2 .

[16] Jim Rumbaugh, Ivar Jacobson, and Grady Booch.Unified Modeling Language Reference Manual. Addison-Wesley,
1998.

[17] S. Smith. On specification diagrams for actor systems. In C. Talcott A. Gordon, A .Pitts, editor,Proceedings of
the Second Workshop on Higher-Order Techniques in Semantics, Electronic Notes in Theoretical Computer Science.
Elsevier, 1998./��3 MNNOOO P-70-1�-, P�7N7�.Q�-N-��.0N1�7�2-RS P/�27.

[18] S. Smith and C. Talcott. Specification diagrams for actor systems. See/��3 MNNOOO P.0 PT/� P-6�NU0.���N03-.6�Q9.
[19] C. L. Talcott. Composable semantic models for actor theories. Higher-Order and Symbolic Computation, 11(3),

1998.

[20] M. Wirsing. Algebraic specification. In J. van Leeuwen,editor,Handbook of Theoretical Computer Science, Volume
B, pages 675–788. North-Holland, Amsterdam, 1990.

