MODULAR REASONING
FOR
ACTOR SPECIFICATION DIAGRAMS

Scott F. Smith! and Carolyn L. Talcott?

1The Johns Hopkins University*

scott@cs.jhu.edu

2Stanford U niversityT

clt@cs.stanford.edu

Abstract: Specification diagrams are a novel form of graphical notatis specify-
ing open distributed object systems. The design goal isfineleotation for specifying
message-passing behavior that is expressive, intuitivederstandable, and that has for-
mal semantic underpinnings. The notation generalizesrimdbnotations such as UML's
Sequence Diagrams and broadens their applicability toilathe design cycle. In this
paper we show how it is possible to reason rigorously and hadguabout specification
diagrams. An Actor Theory Toolkit is used to great advantagéhis purpose.

INTRODUCTION

Specification diagrams are a novel form of graphical notation for specitypeg dis-
tributed object systems. Our goal is to define notation for specifyiegsage-passing
behavior that is expressive, intuitively understandable, and that hgsraus under-

lying semantics. Many specification languages that have achieved widespread usag
have a graphical presentation format, primarily because engineers can andenstl
communicate more effectively by graphical means. Popular graphical specification
languages include Universal Modeling Language (UML) and its predeceds®jrs [
Petri nets, and Statecharts [9]. UML is the now-standard set of objestted design
notations; it includes several different forms of graphical specificataation. Our

*Partial funding provided by NSF grants CCR-9312433 and G6E3843
TPartial funding provided by ONR grant N00014-94-1-0857, A\$ant CRR-9633419, DARPA/Rome
Labs grant AF F30602-96-1-0300, and DARPA/SRI subcontt@ed00042.

aim is a language with similar intuitive advantages but significanthatgr expressiv-

ity and formal underpinnings. The language is also designed to bel tisefughout

the development process, from an initial sketch of the overall architeitutetailed
specifications of final components that may serve as formal documentatiori-of cri
cal aspects of their behavior. The underlying communication assumptiense

are taken from the actor model: object- and not channel-based naming is usad, op
systems are treated explicitly, and message passing is asynchronquandawith
nondeterministic arrival order.

Rather than attempting an overview of the language here, the best inioydisct
via examples, which we try to get quickly to. The next section is a bxtedduction to
the underlying actor communication model, and this is followed by atshiwoduc-
tion to the diagram syntax. The following section shows how specificatiagrams
may be used in practice via examples. Then, the actor theory frameworkakitlito
outlined. This is a general framework for defining and reasoning aboutacitems.
Following is a section outlining how diagrams may be given operatioeaning via
an actor theory, and lastly we conclude with an example proof of correspoade-
tween diagrams. By necessity many technical details are missing from thevéatibd
presentation; see [18] for a more complete exposition. [17] isritti@li paper on this
topic.

Actor Concepts

We provide a brief overview of the underlying actor basis at this fpoifhe Actor
Theory Section below builds the actor theory framework over this bagitors are
distributed, object-based message passing entities. Since actors aréoabgrttthey
each have a uniqugame and actors may dynamically create other actors. Individual
actors independently compute in parallel, and actors only communicate bageess
passing. Messages are sent asynchronously, so message send instneggobock.

All messages must eventually arrive at their destination, but withrarkitielay.

To describe interactions with an actor system component we assume given a set
of actor names & A and a set ofmessages Mt Msg. These constitute aactor
communication basidMessage packetapare of the forma<M, indicating message
M is sent to actoa. Actor names may occur in messages and entities of other kinds
used in modelling actor computation. To determine which names occur waeequi
that each such s&t be equipped with an acquaintances funcimg: X — P,(A)
giving the finite set of actor names occurring in elementX .of\Ve also assume that
the set of acquaintances can be renamed without changing the structure orgreanin
such an entity.

Actor systems are intended to model open distributed computation. niésass
that the whole system will not be explicitly specified, and the franrkwaust assume
someexternal actorsare interacting with the local system. Additionally, of the local
actors, only some of their names may be known by external entities; thesbear
receptionists We usep to denote the set of receptionists ando for the set of
external actors of an actor system component. The (pg)) is called the system
interfaceand we writegx) to indicate thaSis an open actor system with receptionists
p and known external actoys

I
Sequence Parallel Choice Fork Skip
T
a a a
<
% K X D
il
| %
Send Receive Send-Receive Loop EOD
| ———
]
new x fresh x ¢ ? O] x =y D X [‘)
‘ I
New Fresh Constrain Assert Assign Recursion Rec. var S€OPe

Figure 1 Specification Diagram Components

An individual “run” of an actor system is modeled by iateraction paththat is, a
possibly infinite sequence of interactions: inpdtsia<M), and outputsout(a<M).
The interface of an interaction path is that of the system. In such a rusethef
receptionists will grow if new local names are sent out in messages and thé set
external actors will grow when previously unknown names are received isapes
from the outside. Thénteraction path lawrequires that a message can only be input
to a receptionist or output to a known external actor.

SYNTAX

In this section we present the syntax of specification diagrams, and amadfde-
scription of their meaning. We use two forms of notation for diagraoms graphical
and one textual. The graphical one is intended for use in practice: thieigahgraw-
ings are highly intuitive. However for mathematical study the textoah is easier
to manipulate. Figure 1 presents the graphical diagram components. Veéntsal
indicate progress in time going down, expressing abstract causalrgyderievents,

with events above necessarily leading to events below. This causal ordéltihg
termed acausal threadNote there is no necessary connection between these “threads”
and actors or processes, the threads exist only at the semantic levedleatsiead

of causality may be multiple actors, and a single actor may have muttipgads of
causality. In the figurdD itself may be any diagram, and any two components may be
connected to any other via a vertical line to form a sequenced diagram. Figuites2

next section presents some examples.

Before describing the constructs one-by-one, we define the form thatttmic
units may take: diagram state variablegonstraintsp, assignmentg), message ex-
pressionsnpy, and actor expressiong. The selXy is the set of diagram state variables
XY, Z ... used in diagrams. These variables may take on values in a fixed mathemat-
ical universeU which we do not completely specify. Diagram messalgsg, are
messagedisg that may have state variables ocurring in them, and similkaglys ei-
ther a state variabbeor actor name. The assignment expressignis a function on
U which may refer to variables iMq4. Predicates ol are notated. acq D), the actor
names known t®, is defined a$),,c;{acqu) | u occurs as aMg,aq,or Y in D}.

The individual graphical constructs are now informally described. \&étbh con-
struct the textual grammatical equivalent is given in parentheses.
sequence D1;Dy) Vertical lines (causal threads) represent necessary temporal se-
guencing of events iD; before those iD,.
parallel (D1 | D2) Events in parallel diagrams have no causal ordering between them,
but are after events above and before events below.
choice D1 @ D2) One of the possible choices is taken. There is no requirement that
the choice be fair, in the sense that for a particular actor computati@athe branch
could always be taken. Standard if-then-else is easily definable with chaiceoan
straints.
fork (fork(D)) A diagram is forked off which hereafter will have no direct causal
connection to the future of the current thread (however, messages cdintetity im-
pose some causality between the two).
skip (skip) Does nothing.
send gend(a<M)) A message is sent ®@with contentaM. There is a requirement
that message delivery be fair, in the sense that any message sent musilvarrtue
at its destination.
receive feceive(a<M)) A message is received by acmrpossibly binding pattern
variables in the messagd#, which can be used below in the diagram. This statement
blocks until a message arrives matching its pattern. If a message arrivasvaur
matches anyeceive, that message starves, and the computation path is thus consid-
ered unfair and is not admitted.
send-receive (discussed belowd message is sent from one component of the dia-
gram to another, producing a causal cross-connection in what could have bsaihycau
unrelated segments. The edge imposes a strong constraint, because themsansder
must have sent the message to the indicated receiver, and it was expdicélyed.
loop (ID1%+*) The diagram is iterated some numiretimes, wheren is nondeter-
ministically chosen from the interval.0.«. The casen = « chosen means it loops
forever. The textual syntax here is not in the core language—it is a naatmeviat-

ingrecX.((D; X) @ skip). Loop [D]%¥ is similar but cannot run forever, afi®] ®

must only run forever.

EOD (eod) Denotes the end of a causal thread in the diagram; expressed by existing
syntaxrecX.(skip; X).

scope {Xo,--- ,Xn : D}) Brackets demarcate static scoping of state variables. In the of-
ficial textual syntax explicit variable declarations are given (and the vaganitially
given arbitrary values), but by an an implicit convention discussed bé&l@gketing
alone may be used to define variable extent.

recursion (rec X.D, X) A boxed diagram fragment may refer to itself by nare,
so X occurring inside the box refers to the whole bok.€ X, is a countable set of
recursion variables. Standard while-do syntax may be defined via recurbiming,

and constraints.

new (new(x)) State variable is assigned arbitrary contents.

fresh (fresh(x)) State variable is given contents consisting of an actor name not
currently in use.

constraint (constrain(@)) An arbitrary constraint is placed on the current thread of
causality, which must be met. There is no direct analogue to this notioonstraint

in programming languages: the constraint may be any mathematical expressib

a constraint failing does not indicate a run-time error, it indicatasshch a compu-
tation path will not arise. This interpretation is analogous toassumepredicate of
Dijkstra’s predicate calculus [6].

assertion @ssert(@)) An arbitrary assertion is made. Unlikenstrain, anassert

that fails indicates failure of some property, and has no programmaticingearhis

is analogous to Dijkstra'assertpredicate.

assign :=) A variable is dynamically assigned a new value. The assignment body,
Y, can be any sensible mathematical expression.

We define some syntactic sugar which allows variable declarations at a snapd b
ary to be implicit: {D} abbreviategxo, ... ,xn : D} for X, ... ,X, being all state vari-
ables occurring directly i (not in a deeper lexical level) Certain syntax is easily
encodable via macros and so is not defined in the core gramabat:t abbrevi-
atesconstrain(false); fail abbreviateassert(false); andnew(x = u) abbreviates
new(X); constrain(X=1S). Translation from graphical diagrams into textual nota-
tion is obtained by inductively replacing the graphical syntax with threesponding
textual syntax listed above. A global transformation is used to encadeathstraint
introduced by cross-edges, a topic we must skip here.

A top-levelspecification diagram includes an interface, nota(@)ﬁ Top-level
diagrams are modules which may be directly given semantic meaning. Weowill n
always include the phrase “top level” but meaning should be clear fronexont

USING SPECIFICATION DIAGRAMS

In this section we aim to illustrate the full range of functionalifytie language via
examples. The subsequent sections outline how the meaning of diagrdassanted
properties of diagrams may be established.

TickerFactory(a) = LiveTicker(a) =
. new(count € Nat) y(@ -1 .00 @
Ticker(a) = 0..00 et 0..00
=
—— 0-© W@ adtime@c
adtime@x adnew@c
x <reply(count) fresh() new(count)
I — c < reply(count)
L
"<reply(t
count = counr+ 1 wcszmne [
e Ticker(r)
—
CountingTicker(a) =
new(count = 0)
new(count = 0) new(count = 0)) r——'|0 «
ChoiceTicker(a) = a<tick ParTicker(a) = a<tick adtime@c |
c < reply(count)
~—
0
a<qtick © a<tick 44 time@x count := count + 1
—_—> adtime@x <~
le—gtime@x ount *= ¢
) ! count := count + 1 x areply(count)
count := count + 1 x <reply(count) a<dtick
adtick o]
. SafeTicker(a) =
MonotoneTicker(a) =
new(count € Nat, prevcount = 0)
0.0
.)
adtick new(count € Nat, prevcount = 0) et 00
0..00 adtime@c
=
adtime@c c<reply(count)
R
c<reply(count
~<c=reply(count) | prevcount < count !

new(count s.t. prevcount < count) preveount := count

prevcount := count

count := count + 1

Figure 2 Ticker Specifications

Expressing patterns of message passing

We give here a series of examples illustrating how the constructe ddiyuage may
be used to build interesting specifications.

Ticker. A ticker is a simple specification of a monotonically increasing counter
which replies tocime messages with its current count value. This example illustrates
the unbounded nondeterminism present in actor computations. A éiwghspecifica-
tion is as follows. This high-level specification as well as the otheetieikamples to
follow appear diagrammatically in Figure 2.

Ticker(a) =
{ new(counte Nat);
[[receive(a<time@Xx); send(X<reply(count)]®¥; count:=count+1]1%>}

This succinct specification expresses the fact that the count can stay constant fo
finitely manytime requests, but then must increment. The meaning of this top-level
diagram[[(Ticker(a))3], is a selpricker OF interaction pathg. The diagram meaning
function[-] is outlined in the Operational Semantics Section below. Figure 2 also
contains the TickerFactory, a factory for producing tickers, which shoove new
actors may be dynamically created ¥igesh andfork.

Function Composer. We define a distributed method for computigg f for
composable function$ andg: the functions are computed at remote nodes and the
values combined at a third node. For any actor nanand functionf € V — W, the
following diagram Ka, f) specifies a component that accepts request®fdhe form

FC(a,af,ag) =
Faf)=

i XCla.afag)
0..00 a,af.ag) =
= 8 T o
a< compute(x)@xc, =
T a< compute(x)@xc
—_ fresh(y) aconpute@re, 1
(.00
_a< compute()@ | afacomputeW)@xf . fresh(y) ——
a< compute(x)@xc, A
xf<reply(y) af <comput e(x) @y
: L Zrepivly) |af <computeW@xf , |
) Af<reply(f(x))
fresh(xg) 1
= < U) @x; fresh(xg) b 0.0
ag< compute(y)@xg. —_ —
—_——
T xg<dreply(z) ag< compute(y)@xg
PR AR S ACY E,
<edreplv@ | g reply(e (F()
xc< reply(z)
el ~— -
— — -
—

o~

Figure 3 Function Composer Specifications

compute(V)@c and sends to areply(f(Vv)).
F(a, f) = {x,xc: [receive(a<compute (X)@Xxc); send(xcareply(f(x)))1%}

Graphical diagrams of this and the other function composer examples areigiv
Figure 3. For any actor namesaf,ag, FC(a,af,ag) specifies a component that ac-
cepts requests ta of the formcompute(v)@c, asksaf to compute onv, and then
asksagto compute on the result fronaf, sending that result ta

FC(aaf,ag) = { [
receive(a<compute(X)@XxC); fresh(xf); send(af <compute(x)@xf);
receive(Xf <reply(y)); fresh(xg); send(ag<compute(y)@xg);
receive(xg<reply(2)); send(xc<reply(z))1%- }

The fresh namexsf andxg are private names FC sends as the customer to the target
only; the target is to reply to this name, guaranteeing the reply came fretartget or

the target's accomplice. Thus in a context whafrés the name of ari computer and
agis the name of @ computer, FC composed andagto become @o f computer.

C(a, f,g,af,ag) puts FC in such a context:

Cla f,gaf,ag) = (FC(a,af , ag) | F(af, f) | F(ag,g))

XC(a, f,g,af,ag) of Figure 3 is nearly identical to @, f,g,af,ag), with the excep-

tion that the send and receive edges are connected cross-edges. This may not seem
like much of a difference, but the cross-edge diagram makes a much stroeger as

tion about the message-passing behavior in that it constrains how seddsceives

must line up at run-time. This is the main reason for the presence ofrsenive

cross edges in the diagram syntax. XC is thus a higher-level specificatiorg; is an
equivalent one closer to implementation.

Relating Specification Diagrams

In this section, terminology for when an implementation satisfies a spetifin will

be informally introduced. For this we need a useful notio(‘mbg = (Ds))’:(’ (imple-
mentationD, satisfies specificatioDs). Two concrete notions of satisfaction are now
presented.

Loose Satisfaction. The standard notion of satisfaction in the literature is that
the implementation refines the specification. We term lduse satisfactionIn al-
gebraic specification for example [20], this is the only relation definedssert an
implementation meets a specification.

This form of satisfaction is a subset relationship on interaction peltladiors:

Definition 1 (loose satisfaction):(Dy)§ = (Ds)y iff [(Di1)§] C [(Ds)i].

Loose Satisfaction and the Ticker. Loose specifications may easily be writ-
ten in specification diagrams. Consider for instance the LiveT{ekesf Figure 2.
This specification of the ticker only specifies that all time requests recegya iThe
loose satisfaction relatiofTicker(a))§ = (LiveTicken(a))g then is in effect asserting
the liveness of the Ticker. Diagrams are in fact extremely useful as a meanshyher
properties of specifications may be asserted, a topic that will be addressedutly
shortly.

Another important use of loose satisfaction is in cases when it is necessaye
an implementation more deterministic than the specification. An examileei
CountingTickefa) of Figure 2. This implementation replies with a number one bigger,
loosely satisfying the Ticker specificatiofCountingTickefa))3 = (Ticker(a))j.

Strong Satisfaction. Foranimplementation to fully and faithfully satisfy a spec-
ification, the two must have the same sets of interaction paths, ieé:,abservable
behavior to the environment is identical. Thistsongsatisfaction, an equivalance.

Definition 2 (strong satisfaction): (D)% H (Ds)§ iff [(Di)§] = [(Ds)X]-

Strong Satisfaction of the Function Composer. A good example of strong
satisfaction is found in the context of the function composer exaaipdee. A high-
level specification for computingo f is just Ha,go f) which directly computego f.
We may then assert the following.

Theorem 3. (C(a, f,g,af,ag)3 H (F(a,go)3

This Theorem will be proved in the penultimate Section. The proofvshmow it
is possible to rigorously reason about diagrams.

Strong Satisfaction, Restriction, and the Ticker. A more low-level spec-
ification of the ticker could sendick messages to itself to increment the counter:
every time it receives &ick, it increments the counter and sends itself anothek.
One possible manner of writing this is the ChoiceTicker of Figure 2Another
reasonable alternative is to use parallelism betweertile& andtime instead of
nondeterministic choice, the ParTicker of Figure 2. The Ticker, Chottefj and

ParTicker are close to being equivalent specifications. However, the Tickerrax
accepttick messages, so it is in fact slightly different. Nonetheless, in a context
where actora receives onlytime messages, all three are equivalent. For this pur-
pose we use a restriction operator to restrict interactions to releadims.pLettingv

be {a<time@c | c € A andc # a}, the notationChoiceTickefa))3[V indicates the
top-level diagram in a context where input messages are\froamly.

Theorem 4. (ChoiceTickefa))j[V H (ParTickefa))3[V H (Ticker(a))3.

Note that(Ticker(a))3[V = (Ticker(a))3, since Tickefa) does not acceptick
messages,

Asserting Properties of Specifications Diagrammatically

Safety and liveness properties can be asserted directly in the specificatioantdiagr
language. We present three different techniques for asserting safety ams$$yaop-
erties diagrammatically. The first method is based on loose satisfacti@setond is
based on diagrammatically defining an environment which enforces the speadaificatio
to have the proper behavior. The third method is by directly decagr#im specifica-
tion with logical assertions.

The first method is as follows. The underlying idea is that a predisateh(as a
liveness condition) can be defined by a diagasip) iff ip € [[(D))‘Z]]. The asser-
tion that all behaviors of a particular diagrddh have the property is then just
(D)} F (D).

An example of this method was in fact given earlier: the property that that al
time messages sent to the Ticker will receive a reply was expressed by the LiveTicker
specification, and the statemefficker(a))j = (LiveTicker(a))§ asserts the Ticker
has such a property. Itis trivial to show that LiveTicker responds ttinaél messages,
so satisfaction of this specification is the liveness argument.

A second and perhaps more convincing way to assert liveness is by specifying
an environment which enforces liveness. For the Ticker, the environmeuldshs-
sert that alltick requests are handled. Thesert predicate is used for this pur-
pose (more precisely theail macro, defined asssert(false) in the following
LiveTickerEnvt:

LiveTickerEnvia) = [fresh(c);send(a<time@c); (receive(cax) ® (fail; eod))] %

Failure arises only when there istame request that does not get answered — the
receive choice is never possible and so failure is the only possibilitfailfire were
chosen when there was in fact a reply to be received, that path would be unfaiséecau
a message was never received. We then agsédificker(a) | LiveTickerEnv(a))g,
which means there are no paths of this combined system which cortaiiiavent.

Safety properties are properties that hold at certain points in executienvitA
liveness, safety can both be asserted by showing the specification satisfietraatab
specification which obviously has safety. The third manner in which ptiegenay
be diagrammatically asserted is that safety properties may be directly asseitied i
specification itself visassert decorations. An example of a specification decorated
with a safety assertion is a ticker which asserts successive outputs atecr@asing.

PhoneRoute(c,e,r) =

caller | exchange | | receiver |
(% caller ¢*) (* exchange e *) (* receiver r *)

lift receiver

e < lift-receiver

dial tone ¢ < dial-tone

dial digit ¢ < dial-digit

= 1o,
\ uge

ringing phone phone rings

¢ <ringing-phone | r < phone-rings

answer phone ¢ < answer-phone

| stopphone | Stop ringing ¢ < stop-phone r < stop-ringing

u u U \/

Figure 4 A UML Sequence Diagram and its Corresponding Specification Diagram

Then, the safety assertion jis (SafeTicke(a))§, for SafeTicker of Figure 2. The
ability to express assertions diagrammatically means there is less needta kyse-
cialized logic in which assertions are written.

Comparison with UML Sequence Diagrams

Specification diagrams were partly inspired by UML sequence diagrams [L6k(t
specific, by an early version known as a message trace diagram [15]), and the two
share concepts. However, sequence diagrams are primarily designed toostsiviep
scenarios of execution, and not to give all possible scenarios. Theyiararily for
informal design and not rigorous specification.

The left diagram of Figure 4 is a UML sequence diagram which is presentddl in |
(we have removed temporal constraints since specification diagrams agalrtirne).
On the right side is the same example re-expressed as a specificaticandialjnis
example also brings out the usefulness of the send-receive cross+edgesification
diagrams. An approximate analogy of features and properties is found foltbw-
ing list of “Sequence diagrams::specification diagrams” analogies: paraltetaler
lifelines::parallel construct; split and merged lifelines::choice; asyomobus and syn-
chronous messaging::asynchronous basis; incomplete informal sesnaotinplete,
rigorous semantics; (not present)::usefulness as a logic for agsprtiperties; (not
present)::explicit open systems modeling; activation/focus of cbrftrone — funda-
mentally concurrent); real-time constraints::(none currently); praldinguage::research
language.

AN ACTOR THEORY FRAMEWORK

In this section we briefly review the semantic framework used to modet agstems;
this framework will then be used to give semantics specification diagranagfine
satisfaction relations both between pairs of specification diagrams and to edamat
these relations. More detail about the framework can be found in [19, 13

Actor theories

The actor theory framework is a general mathamatical framework for definitig an
reasoning about the semantics of actor systems. It can be used to defineoopérati
semantics for actor programming languages or the specification diagram lan@uag
main use here). But also very specialized actor theories may be defined, destibing
behavior of one particular fixed actor system, for instance a “Ticker” actmryh The
principle effort in defining an actor theory is the definition of a setezfation rules
that describe how an actor system evolves internally. The framework pesifies

the interaction paths induced by that rule set.

Actor theory structure. An actor theory contains an actor communication ba-
sis that provides sets afctor namesandmessagesquipped with acquaintance and
renaming functions as described in the Introduction. It provides, ditiad, a set of
actor statesand a set ofabelled reaction rulesAn actor states € S describes a state
of a group of one or more actoiacts o) : Pi,(A) called theinternal actors

Reaction rule labels are used in deriving a labelled transition system desaant
Labelsl € L are equipped with four functions determining the (existing and new)
actors and message packets participating in a transition.fokdusactorsfAct{l) :
Pw(A) and received packetMPs(l) : M ,(MP) are calledriggers elements that must
be present for a rule with labkto apply. The created actocéctgl) : Pi,(A) and sent
packetssMPgI) : M,(MP) are theeffectsof applying a rule with label. For any
label, the targets of received packets must be members of the focus actor set.

Reaction rulefRR determine how the group as a whole evolves and responds to

. . . . A,
incoming messages. Each reaction rule is of the fdrmog Bal.N o1 wherefA =

CAls
fActgl), cA= cActgl), i = rMPs(l), andps = sMP<1). We omit mention ofActg1)
if it is the set of internal actors adp and also omit mention of empty sets of created
actors, received or sent message packets The set of rules must satisfy traduatel
actor locality laws of [1, 3].

Operational semantics of an actor theory. The operational semantics of an
actor theory is given by a labelled transition relation on actor system cwafigns.
A configuration has an interface and an interiorc@afiguration interior I, is a state
together with a multiset of message packets, calledutideliveredmessages. We
write (o,) for the interior with states, and undelivered messagpsmdl)‘z for the
configuration with interiot and interfacép,x). The receptionists of a configuration
must be a subset of the internal actors (of the state), the interfacealstenust be
disjoint from the internal actors, and the acquaintances of the intdvadrare not
internal actors must be a subset of the externals.

Configurations evolve either by internal computation according to #aetion
rules, or by interaction with the environment. The transition rulesdafined as
follows.

Definition 5 (Transition rules):

(internal) (oo, -) § N (on,W-ps)y i 1100 —f/:—u> 01 € RRA cAN(acqp)ux) =0
cAls

. in(a<M . .
(in) (o, p)? ﬁ (o, - aaM))‘zu(ach)ip) if aepAacgM)niacts(o) Cp

out(asM) >§U(aCC(M)—X) if

(out) (o,p-aaM)§ ——— (0,14 acy

The set? of computation paths is the set infinite sequences of transitions of the

form = [K; 4 Kis+1 | i € Nat]. A computation segment is a finite segment of a
computation path.

Constrained Actor Theories and Interaction Semantics. A constrained
actortheory,cATh is an actor theorAThtogether with a subse of the computation
paths that are considered admissible in the derived interaction semantieswrit@/
(ATh 4) for the constrained actor theory with underlying actor theé®dfrand admis-
sible paths2 C 2. Admissibility can express notions of fairness, or require paths to
be in a certain canonical form, or even express constraints on what theraneint is
allowed to do.

Interaction semantics gives a more abstract view of an actor system, spgoifijyn
the possible patterns of interaction that a system can have with ithament. The
interaction semantichK : cATH] of a configuratiorK in a constrained actor theory
cAThis the set of interaction paths associated with admissible computatidfs o
The interface of the interaction paijtn associated with a computation pattis that
of the initial configuration ofit and its interaction sequence is the subsequence of
input/output transition labels af. Thus it hides internal state and transitions. When
the constrained actor theotAThis clear from context we write simpljK].

Operations on Actor theories

There are many operations for moving between generalized and specialized actor the-
ories, and for combining theories to make richer theories. These operatiow us

to move around in the space of actor theories in semantically meaningfulamays
serve as an important part of a toolkit for reasoning about actor systempoc@nts.

Here we describe only what is needed in our example of reasoning aboutcsiemrifi
diagrams: isomorphism, state restriction, product, and localization.

Isomorphism. Two (constrained) actor theories asemorphicif there are bijec-
tions between their states and rules such that corresponding rules haspooding
states and the same triggers and effects, and such that the bijections Iitjéction
between the admissible paths that preserves interaction labels.

Lemma 6 (iso): If cAThy andcATh, are isomorphic an&o : cAThy corresponds to
K1 : cATh, then[Ko : cAThy] = [K1 : cATh]].

State restriction. Restricting an actor theory to use a subset of its states allows
us to move from a general to a more specific theory AJdtbe an actor theory and let

So C She a subset of the statesAfh The restrictiorATH Sy of AThto & is obtained

by closingSy under rules and renaming and then restricting all operations and rules to
the resulting set of states.dATh= (ATh 4) is a constrained actor theory aS¢IC S,

then the state restriction cAThgiven bycATH Sy = (ATh[Sp, A[So) where4[Sy is
the restriction of4 to computations oATh[So.

Lemma 7: State restriction preserves interaction semantics € SandK is a con-
figuration ofcATH &), then[[K : cATH S]] = [K : cATH].

Product. The product of two actor theorieAThy, cATh (over the same set of
actor names and messages) is the actor the®fyy x cATh formed as follows: the
states of the product theory are pairs of stdtego1) € Sy x S; with disjoint inter-

nal actors; the reaction rules of the product theory are the union oiuthe of the
component theories lifted to pairs by acting on the appropriate compoaahthe
admissible pathgly; of the product theory are those paths that project to admissible
paths in the component theories. A useful property of product is tieahitmutes
with interaction semantics preserving transformations.

Lemma 8: LetcATh, cATH, andK; = <O’j,uj>§} be s.t[K; : cATh] = [K; : cATH]
for j < 2. Assumdacts(ap) Niacts(o1) = 0 and letp = poUp1, X = XoUX1—p, and
K =((00,01),Ho- 1) §- Then [K: cATh x cATh] = [[K : CATH, x cATH].

Localizing messages. When actor systems are combined, many interactions with
the environment become internal exchanges of messages that are no lorgerivisi
the interaction semantics. This happens for example when the produai of more
actor theories is formed. We can make these interactions silent in the catropyttath
semantics by applying thecalizationtransformation. The localizationoc(ATh) of

an actor theonAThis obtained by adding an internal mail buffer to each state and
putting messages sent by internal actors to internal actors in this burfetlg rather
than in the undelivered message getsThe rules are correspondingly modified to
take messages both from the internal buffer and from the undelivered messtag
Localization lifts naturally to computation paths and the admissiblespat a local-
ized constrained actor theory are the localizations of admissible paths ofitfinal
theory.

Lemma 9 (Localization): Let cAThbe a constrained actor theory with configuration

K, andK’ be a corresponding localized configuratioh.o&(cATH); then,[[K : cATH =
[K": Loc(cATH].

OPERATIONAL SEMANTICS OF DIAGRAMS

Diagrams are given meaning via an operational semantics, sketched here. The goal
is to give a set of interaction patt’[$D)§(’]] defining the behavior of top-level dia-
grams(D))':(’. This is accomplished by defining a constrained actor the8HTh=
(SDTh2%%. which specifies the computation paths of diagrams. To define the dia-
gram actor theonDThthe obligations are to define the states and reaction rules. For
the constrained diagram actor thea§DThthe admissibility predicate75d must also

be defined.

Definition 10 (SDTH: The states oEDThare of the formo = (D, iA), whereD is
a diagram syntactically indicating the current state of executionifade the actors

defined as internal tB®. The acquaintance and internal actors operations are defined
by acq(D, iA)) = acqD) Uacq(iA), andiacts({D, iA)) = iA. The labelled reaction
rulesRRY are a rigorous version of the informal descriptions given in thet&yn
section.

See [18, 17] for the complete rules®’. Here we illustrate the rules via an exam-
ple computation. Recall the function composer system FC of the Exampttios
We will show one complete pass through the loop. For this purpesdefine two
additional diagrams that correspond to correspond to positions imtieéding of the
inital state diagram using the environmerid specify currently bound variables. Let
y contain the binding$x — v,y — w,xc+— ¢,xf — cf,xg— cg} and we define

FCl(a, af,ag,y) = {x— v,xc+ ¢, xf — cf :
receive(Xf <reply(y)); fresh(xg); send(ag< compute(y)@xg);
receive(Xg<reply(Z)); send(xC<reply(z)); FC(a,af,ag)}
FC2Za,af,ag,y) = {x— v,xc+ ¢, xf — cf,y+—> w,xg— cg:
receive(Xg<reply(Z)); send(xC<reply(z)); FC(a,af,ag)}
In each state the internal act@gsA consists of the initially present actarand the
actors created to receive replis

An example of reaction steps via the reaction rules is then (recdli§- ab-
breviatesrec X.((D; X) @ skip)) is:

(FC(a,af ag), a,A)
rec(X) choose(l) receive(adcompute(V)@c) ﬂfresh(cf) ﬂ send(af<compute(v)@cf) ﬂ

FCl(a af,ag,v1), a,cf,A) where y; ={x+ v, xc— c,xf > cf}

{

QFC:I(a,af ag yl) a,Cf AD receive(cfdareply(w)) ﬂ fresh(cg) ﬂ send(ag<dcompute(w)@cg) ﬂ
(FC2Za,af,ag,y2), & cg,cf,A) where y>=yi{y— wxg— cg}
{
{

FCZ(a,af,ag, y2), a,cg, AD receive(Cgdreply(u)) ﬂ send(c<reply(u)) ﬂ

FC(a af,ag), a,cg,A)

Theseq steps in the above moves on to the next diagram expression in the sequen
Lemma 11: SDThas defined above is an actor theory.

We now define the admissibility predicate to give a constrained actontheecall
from the definitions that in the actor theo®DTh configurationK are of the form
((D, iA),) §. Thus computation patitse # are of the form

n= [<4Dla IAIDa“l))p(: t_> <4Di+l; IAi+lDaM+l>)‘2:ll | e Nat]

Definition 12 (cSDTR: c¢SDThis defined as the constrained actor the@@pTh 2%
where 459, the admissibility predicate on paths, is defined the restriction tospat
which (1) do not get stuck at any point (for instance by failingpastrain or waiting
for a message that never arrives) and (2) eventually process all messgages in

Given the definitions of the reaction rules and admissibility predicate, now
possible to “turn the crank” using the actor theory framework of tleoATheory
Framework Section and produce interaction semantics for diagrams:

Definition 13: The interaction path semantics of a top-level diagr@(rb))ﬁ’]], is then
defined aq[({{D}, dInActiD,p,x)b,(Z)))‘(’ : cSDTH, where the initial internal actors

dinActgD, p,X) = (pUacqD) — x).

Diagrams that contaiassert may be checked to determine whether the assertions
are valid in all paths.

Definition 14: A diagramis (truth-) validj= (D)Q, iff there are nate 4%%with initial
configuration({{D}, dInActe{D,p,x)[),O))Q that contain arassert(falsg-labelled
transition.

Canonical and Macro-Step Forms. We next develop simpleranonical forms

for diagram computations to make it easier to reason about them.As theioparat
semantics is currently structured, atomic computation steps suayashoose, and

rec are very small units of work. When reasoning about parallel threads, at first
glance all possible interleavings of such steps need to be consideredddaerthe
number of interleavings, we group atomic steps bitpstepsa path segment consist-
ing of atomic steps which can without loss of generality be performechimeadiate
sequence. Theanonical form computatiorere those that only perform maximal big
steps. Steps beyond the trivial ones listed may also be grouped itepigy She gen-
eral criterion is that a big step must be oblivious of any steps that dmildterleaved

in parallel with its execution. We defirsSDTha, ascSDThwith the canonical com-
putations compressed together into macro steps. As an example of a macro step
transition incSDThg,, we revisit the FC example execution covered previously, in
macro-step form:

adcompute (V) @c

(FC(a,af,ag), &,A) (FCY(a af,ag,v1), a,cf,A)
cf,afgcompute(v)@cf

where y; = {x— v,xc— ¢, xf — cf}
(FC1(a,af,ag,v1), acf, A) —=pr")
cg,agdcompute(Ww)@cg
where v, =yi{y— w,xg— cg}

(FC2a,af,ag,v,), a,cg,A) “EZPIU, ¢
careply(u)

(FC2a,af,ag,y2), a cg,cf,A)

FC(a af,ag), a,cg,A)

Notice how multiple transitions are replaced by single macro-steps Baoh. macro
step can have arbitrary internal steps, and at most one receive followed byaiwer
of sends.

When reasoning about specification diagrams it is most convenient to spearalize
actor theory for the particular diagram under study. So while up to newave had a
singleactor theorycSDThfor all specification diagrams, we now defidiéferentactor
theories specialized only to a particular diagram execution. For this peirge define
the operatioA({D, iA)) that specializesSDThan to just the states reachable from
initial state{D, iA).

Definition 15 (specializing): A({D, iA)) = (cSDThan) [{D, iA).

Lemma 16: {{D, iA[),@))‘z :cSDThH ({D, iAb,(Z)))‘z :A(YD, iA)).

In general, the parallel diagram constructibg | D1 is not compositional with
respect to the interaction semantics, because bptandD; may specifyreceive
actions for the same actor. In the case that two diagtasasive on disjoint sets of
actor names then the parallel composition of the diagrams corresponéspmthuct
operation on the associated actor theory. We viifex D1 to indicate this disjointness

property.

Lemma 17 (parallel-product): If Do, D1 are specification diagrams such tiate<
D1 andiAy, iA; are disjoint and contain the receiving actors iy, D; respectively,
then

NDO | Dy, iAgU iAlb,w)F() :cSDTh |=| <(4D0, iAoD, 4D1, iA1[)),ll)§ :cSDThx ¢cSDTh
for 4, p, X such that the configurations are well formed.

PROVING SPECIFICATIONS CORRESPOND

We now show how the techniques developed above may be used to estabfish pr
erties of diagrams. An important form of reasoning about diagrams iedw shat
a simple, high-level diagram is equivalent to (strongly satisfied kdipgram that is
the composition of component diagrams. As a simple example we @sribiel func-
tion composer presented in the Examples Section. We show how the pocaly |
computation ofgo f is equivalent to the distributed implementation. This is The-
orem 3 of the Examples Section. To prove the Theorem we must show that
[{C(a, f,g,af,a0)§] = [(F(a,go f))3]-

First we calculate the specializations of the F and FC diagrams to obtaisinguie
actor theory descriptions of the semantics. We then apply lemma 17 thasall
to represent the parallel composition iffaCf,g,af,ag) by products and lemma 8
that allows us to specialize the individual actor theory descriptionsréaipplying
the product. Finally we apply the localization transformation to thedpct actor
theory. This yields an actor theory isomorphic to the specializatiorFfargo f)
which establishes the theorem.

The specializatiod\({F(a, f), a)) has two stategF(a, f), a) and{skip, a), and
two rules:

(F(af, f), a) — (skip, a)

4F(af, f), a[) adcompute(V)@c
c<areply(f(v))

{F(af,), a)

Note that the construction of this actor theory is uniform in the patersaf, f.

The specialization for the function compog€FC(a, af,ag), a,af,ag)) has four
families of states and four rules. The states are: the initial $E@éa, af,ag), a,A);
the final state|skip, a,A); and two intermediate stat¢5C1(a,af,ag,y), a,A) and
(FC2(a,af,ag,y), a,A). In each state the internal act@sA consists of the initially
present actoa and the actor# created to receive replies. The intermediate diagrams
FC1 and FC2 were given as part of the computation example of the psesaéation.
The rules ofA({FC(a, af,ag), a)) are {FC(a,af,ag), a,A) — {skip, a,A) plus the
three FC transitions used to illustrate macro steps in the prevéati®s.

Now consider the composition(&, f,g,af,ag) defined above. By lemmas 17 and
8, we have

(C(a, f,g,af,ag))3 : cSDTh
H
((FC(a,af,ag), a), (F(af, f)

, af), (F(ag,9), ag))§
(A({FC(a,af,ag), a)))

{F :
x A({F(af, f), af)) x A({F(ag,9), ag)))

We localize the product theory giving a theory with states of the form
qCCSkipa aaafzagaAD = NSkip7 aaAbqukipa afba QSkipa agb,O)
and

(CCx(a,af,ag, f,g,v,1), a,af,ag,A) =
((FCx(a,af,agy), & A), (F(af, f), af), (F(ag,9), ag),)
wherex is the empty string, 1, or 2 and in the empty string caisenot relevant. Also
K contains messages to actors{af,ag,A}, but not toa. Taking the starting state to
be{CC(a,af,ag, f,g,0,0), a,af,ag) the restricted set of states and rules is as follows.
qcc(aa af7aga fa 0, -, 0)7 a, af7 ag7AD — qCCSkipa a, af: ag, AD

(COla,af,ag1,0,0,0), a,af, ag A) =<5
C

{CC1(a,af,ag, f,g,y1,af <compute(v)@cf), a af,ag,cf,A) —

{CC1(a,af,ag, f,g,y1,cf «reply(f(v))), a af,ag,cf,A) C—g>

q{ f

{

CC2a,af,ag, f,9,Y2,ag< compute(f(v))@cg), a,af,ag,cf,cg A) —
CC2a,af,ag, f,9,y2,cg<reply(g(f(v)))), a af,ag,cf,cg,A)

(CC(a,af,ag, f,g,_,0), a,af,ag,cf,cg A)

-
C<1rep1y(g(f (V)))

We collapse the receive, silent, and send steps to a single big-stepausargnt
of the big-step transform and the result is an actor theory that is tbemoiphic to
A({F(a,go f), a)), completing the proofa

RELATED WORK

A wide variety of notations for concurrent/distributed system spedifindtave been
proposed. Specification diagrams share features with many different sthobalse

still quite separate from existing schools. We very briefly reviems of the related
approaches here.

Specification diagrams are most closely related to other forms of messagegpassi
diagram, diagrams with vertical lines for processes/threads, and horitioesfor
messages. Message passing diagrams have a long history in softwafieap@ti
and are now most widely known as UML Sequence Diagrams [16]. The Examples
Section gave a detailed contrast between specification diagrams and sequence dia-
grams. In the actor model, event diagrams [8, 10, 3] graphically model sogédr
actor computation by message-passing edges between actors, and were anatber sour
of inspiration for this work.

Specification diagrams also share commonalities with other approaches t@precis
specification. Process algebra notation may be used to formally specifyrtirewd-
cation actions of concurrent systems. Parallel composition and choice isiroflar
sort in specification diagrams and process algebra. Message send and receilye is part
analogous to the related concepts in the asynchronaasculus [11]. A number of
full specification languages based on process algebra have been developedegxamp
include LOTOS [2], which is based on CSP; it is now an an ISO standard.

Temporal logic formulae have been extensively used as a means for logcal sp
fication of concurrent and distributed systems [12]. Recently temporiakdgr dis-
tributed object based systems have been developed [7, 5]. While such éoqgiress

an extremely broad collection of properties, a significant disadvantalge issied for
large, complex formulae to specify nontrivial systems. Specificatiorraiiag them-
selves can serve the purpose of a logic by directly expressing safetiyamnelds prop-
erties, as was illustrated by the examples. The use of embedded non-atioalt
assertions is very similar to forms found in Dijkstra-style weakestpndition logics
for non-concurrent programs [14].

Finite automata are useful for specifying systems which have a sstaterbased
behavior. The Statecharts automata formalism [9] has become particudatiap in
industry. The primary weakness of finite automata is that a compléwae system
may not have a meaningful global state.

References

[1] Henry G. Baker and Carl Hewitt. Laws for communicatingaiel processes. IIFIP Congresspages 987-992. IFIP,
August 1977.

[2] T.Bolognesiand E. Brinksma. Introduction to the ISOdifieation language LOTOSComputer Networks and ISDN
Systemgsl4:25-59, 1987.

[3] W. D. Clinger. Foundations of Actor Semantics?hD thesis, MIT, 1981. MIT Artificial Intelligence Labomat/
Al-TR-633.

[4] Rational Software Corporation. UML Notation Guide, version 1.1 September 1997. Obtained From
http://www.rational.com.

[5] G.Denker. DrL*: A Distributed Temporal Logic Supporting Several Commatiizn Principles. Technical Report ,
SRI International, Computer Science Laboratory, 333 Rewend Ave, Menlo Park, CA 94025, 19980 appear

[6] E.W.Dijkstra and C.S. ScholtefRredicate Calculus and Program Semantieslume 14 ofTexts and Monographs in
Computer ScienceSpringer-Verlag, 1990.

[7] C.H. C Duarte. A proof-theoretic approach to the desi§phject-based mobility. In H. Bowman and J. Derrick,
editors,Formal Methods for Open Object-based Distributed Syst®oisme 2 pages 37-53. Chapman & Hall, 1997.

[8] I. Greif. Semantics of communicating parallel processEechnical Report 154, MIT, Project MAC, 1975.

[9] D. Harel. Statecharts: A visual formalism for complexs@ms. Science of Computer Programmiri(3):231-274,
June 1987.

[10] C. Hewitt. Viewing control structures as patterns ofgiag messageslournal of Artificial Intelligence 8(3):323—
364, 1977.

[11] Kohei Honda and Mario Tokoro. An object calculus for mslgronous communication. In Pierre America, editor,
ECOOR volume 512 olLNCS pages 133-147. Springer-Verlag, 1991.

[12] Z. Manna and A. PnueliThe Temporal Logic of Reactive and Concurrent Systemsifja¢ion. Springer Verlag,
1992.

[13] 1. A. Mason and C. L. Talcott. Actor languages their sygtsemantics, translation, and equivalence, 1999. tceaippe
[14] Greg Nelson. A generalization of dijkstra’s calculT®©OPLAS 11:517-561, 1987.

[15] Jim Rumbaugh and Grady Boocbinified Method for Object Oriented Development, version A896. Obtained
Fromhttp://www.rational.com.

[16] Jim Rumbaugh, Ivar Jacobson, and Grady Boddtified Modeling Language Reference Manuatidison-Wesley,
1998.

[17] S. Smith. On specification diagrams for actor systenmsC. Talcott A. Gordon, A .Pitts, editoRProceedings of
the Second Workshop on Higher-Order Techniques in SemsaBtectronic Notes in Theoretical Computer Science.
Elsevier, 1998http://www.elsevier.nl/locate/entcs/volume10.html.

[18] S. Smith and C. Talcott. Specification diagrams for mctosystems. See
http://www.cs.jhu.edu/"scott/specdiag.

[19] C. L. Talcott. Composable semantic models for actooties. Higher-Order and Symbolic Computatioh1(3),
1998.

[20] M. Wirsing. Algebraic specification. In J. van Leeuwedjtor,Handbook of Theoretical Computer Science, Volume
B, pages 675-788. North-Holland, Amsterdam, 1990.

