Specification Diagrams for Actor Systems

Scott F. Smithgcott @s. j hu. edu)
The Johns Hopkins University

Carolyn L. Talcott €¢I t @s. st anf or d. edu)
SRI International

Abstract. Specification diagramsSQ's) are a novel form of graphical notation for speci-
fying open distributed object systems. The design goal idefiine notation for specifying
message-passing behavior that is expressive, intuitivetierstandable, and that has formal
semantic underpinnings. The notation generalizes infonatations such as UML's Sequence
Diagrams and broadens their applicability to later in theigle cycle. Specification diagrams
differ from existing actor and process algebra presentatio that they are not executalger

se instead, like logics, they are inherently more biased tdvepecification. In this paper we
rigorously define the language syntax and semantics ancegamples that show the expres-
siveness of the language, how properties of specificatiansba asserted diagrammatically,
and how it is possible to reason rigorously and modularlyuaspecification diagrams.

Keywords: specification, message passing behavior, actor systetesadtion semantics

1. Introduction

Our goal is to define a notation for specifying message-pgdsthavior that
is expressive, intuitively understandable, and that hagaxaus underlying
semantics. Many specification languages that have achigidmbpread us-
age have a graphical presentation format, primarily becamgineers can
understand and communicate more effectively by graphiedns. Popular
graphical specification languages include The Unified MiadeLanguage
(UML) and its predecessors [36], Petri nets, StatechaB} ghd SDL [28,

17]. Our aim here is to define specification diagran{SD) language with
similar intuitive advantages that combines greater espridg with formal

underpinnings. The language is also designed to be usefulighout the
development process to give: initial sketches of the oleyatem structure,
informal scenarios of possible behavior early in the desiggle, or detailed
specifications of individual components that may serve aadbdocumenta-
tion of critical aspects of their behavior and support r@a checking that
an implementation meets a given specification. It may be @sed pro-

gramming language, or for giving diagrammatic assertidn®wuectness that
encompass safety and liveness properties that can be toutkis terms of
the semantics of the language without need to use a sepagite There

is a textual form which is useful for formal manipulationsherdesign of
the SD language draws on concepts from actor event diagrams [1M], U

p;‘w © 2002Kluwer Academic Publishers. Printed in the Netherlands.

hosc. tex; 14/10/2002; 10:47; p.1

2 S. E. Smith, C. L. Talcott

Sequence Diagrams [36], process algebra [32, 26], andtEjissyle weakest
precondition calculus [34]. The underlying interaction dabis that of the
actor model: object- and not channel-based naming is ugesh systems
are treated explicitly, and message passing is asynchsotiai, and with
nondeterministic arrival order.

This section concludes with a brief introduction to the uhdieg actor
interaction model. Section 2 introduces the diagram syrdaxl section 3
illustrates the use dBD's with a variety of examples. The operational and
denotational (interaction) semantics®iD components is given in section 4.
Section 5 illustrates the use of the semantic frameworkdeae about spec-
ifications.

1.1. ACTORCONCEPTS

We now provide a brief overview of the underlying actor mofi4, 8, 2, 3].
Actors are independent computational agents that inte@ety via asyn-
chronous message passing. Actors may dynamically creade attors. Like
objects in an object-based system, each actor has a unaqueand a mes-
sage can only be read (received) by the actor to whom it was Akactor
computations must obey the actor locality laws [8]: the nsuae actor can
know are those given to it at creation time, names it hasvedén a message,
and names of actors it has created; an actor can only sendgess® actors
whose names it knows; messages can only contain names of kotwn by
the sender; and the names given to an actor at creation tirsebraiamong
those known by the creator. Finally, all messages must eayntarrive at
their destination, possibly with an arbitrarily long deldgirness).

Individual actors are collected into open distributed comgnts calledc-
tor system componentSach component specifies only part of a system; there
will be someexternal actorghat actors of the local system know about and
may interact with. Additionally, of the local actors, onlgrse of their names
may be known by external entities; these are mbeeptionists These sets
may grow over time: the external actors will grow based on emneceived
in messages from the outside, and receptionists may groswiflocal names
are sent out in messages. We pde denote the set of receptionists gntb
denote the set of external actors of an actor system compdrtenpair(p, x)
is called the systenmterfaceand we writeSy to indicate an actor system
componentS with receptionistg and known external actoss The interface
can be thought of as an abstract input/output specificaimte an actor can
only send messages to actors it knows, actors outside a cmmpoan only
send messages to actors in the component that are recsfgi@nput) and
conversely, actors in the component can only send messagetots outside
that are in the set of externals (output). Note that the systey contain

hosc. tex; 14/10/2002; 10:47; p.2

Specification Diagrams for Actor Systems 3

actors not irp; these actors are locally known only. Dually, there can berot
actors external to the system notyn

What we observe about an actor system component is its patiémter-
action with its environment. To describe such interactimesneed at least a
set ofactor namesand a set omessaged-ormally we have

Definition 1.1 (Actor Communication Basis): An actor communication ba-
sis provides a countably infinite sete A of actor names and a séf <
Msg of messages. Message packets are of the forma < M, indicating
messagel! is sent to actor. We let MP be the set of message packets.
We assume given a functiateq (M) that returns the finite set of actor names
(acquaintances) communicated in a message.

An individual “run” of an actor system component is modelgdalpossi-
bly infinite sequence of inputsn(a<M), and outputseut(a<M), indicating
the communication events and the order they came in and dbedystem.
We call one such infinite sequence (together with the systgerface) an
interaction path and model the behavior of an actor system component by
the set of all of its possible interaction paths. A compongititalso have
internal computation actions, but these are not obsenalide the compo-
nent and so do not occur in the interaction paths. ddraputation pathsf a
component consist of its internal actions interleaved wigut/output events.
Interaction paths are defined by first determining the coatpmrt paths, and
then projecting out the internal actions. We use this irdititace form of
model because it directly corresponds to the observableraybehavior:
watching a given component run, the input and output operaiin sequence
are exactly what can be observed. Other models includintg firaces and
bisimulation equivalences also may of course be used.

2. Syntax

In this section we present the syntaxQID's, and an informal description of
their meaning. We use two forms of notation for diagrams, gnaghical and
one textual. The graphical one is intended for use in practiee graphical
drawings are highly intuitive. However for mathematicaldst the textual
form is perhaps easier to manipulate. Figure 1 presentgéphigal diagram
elements. Vertical lines indicate progress in time goingvrloexpressing
abstract causal ordering on events, with events above s@dgdeading to
events below. This causal ordering will be termeazhasal threadNote there
iS N0 necessary connection between these “threads” an atprocesses,
as the threads exist only at the semantic level: a singlethoé causality
may involve multiple actors, and a single actor may appe&at@ multiple
threads of causality. The componeifitsn the figure may themselves be any
diagram: the figure is a graphical grammar. The base caseadiaglements

hosc. tex; 14/10/2002; 10:47; p.3

4 S. F. Smith, C. L. Talcott

DeeDse+D
| D..D=.+D b
L) L]
sequence parallel choice fork skip
X
——
a<M f_ﬂo o J
a<M D D D X
bt
o e
recursion
send receive loop scope recursion variable
assert ¢
pick x fresh x X =y
constrain ¢
A4
pick fresh constrain assert assign EOD
Figure 1. Specification Diagram Elements
such asend, receive, :=, etc., are executed atomically. The figures in the

next section present several simple exampleSs.

Before describing the diagram elements one-by-one, weal#im basic
mathematical building blocks. We assume given a mathealaticiverse,
U, which contains (as subsets) at le#st Msg, MP, Nat (the natural
numbers), andBool (the booleangrue and false). We use mathematical
set theory to define operations and relationstdnDiagrams have a state
component represented using state variables which takalops/inU. X4
is the set of diagram state variables andy, z, ...denote elements &g.
An environmenty is a finite function fromX, to U used to model the as-

hosc. tex; 14/10/2002; 10:47; p.4

Specification Diagrams for Actor Systems 5

signment of state variables to their values. The remainuigding blocks
are expressions used in a variety of ways: assignmentstraons, message
patterns. Rather than fix a syntax for expressions we assivare @ setUy,

of abstract expressions. Formally an abstract expressiarpartial function
from environments to values in the universe. We refer to th@ieation of
an expression to an environment as its evaluation in thatament. We let
1 range overUy, My range over abstract expressions with valuéMisg,
aq range over abstract expressions with valueAinand ¢ range over ab-
stract expressions with value Bool. We say that the variable occurs
in ¢ if Y(y) # ¥(v) for some~,~" which differ just at the variable:
Dom(y)U{z} = Dom(+')U{x} andy(y) = 7/ (y) fory € (Dom(y)—{x}).
The above conditions imply thatis in the domain of at least one gfor v/
and ifz is in the domain of both, then the two environments assidifferent
values. Our convention regarding equality of partial tetm$is thatt = ¢/
means both are undefined, or both are defined and the valueguak This
is equivalent to extendiny4 with a new element to represent undefinedness.
Abstractly, v is just a partial function. In practice it could be undefined o
some environment for many reasons, for example: a variablessevvalue is
needed is not defined; or a function used to compute the ngeafin is not
defined for the particular valuation of variables.

Abstract message expressioh may be used as patterns in much the
same way that algebraic terms serve as patterns in pregertirditions or
rewrite rules. In the case of message patterns, the patterables are the
state variables occurring ifdy and a messag#/ matches), just if there
is an environment whose domain is the set of pattern variables/ff such
that My(v) = M. In this case we say thatbinds the pattern variables to their
matching values. For exampleaifis a diagram state variable, theat(x) is
a message pattern and the message0) matches this pattern bindingto
0.

We use the informal convention that expressipmwritten asz + 1 is an
abbreviation for) () equal toy(z) + 1, and %z € S” means a predicatg
whereg(v) iff v(x) € S.

The individual graphical elements are now informally ddset. With
each element, the textual grammatical equivalent is gingrarentheses.

sequence Dy; D5) Vertical lines (causal threads) represent necessary tem-
poral sequencing of events iy before those irDs.

parallel (D; | D;) Events in parallel diagrams have no causal ordering be-
tween them, but are after events above and before events.belo

choice (D1 @ D) One of the possible choices is taken. There is no require-
ment that the choice be fair, in the sense that for a parti@der com-
putation the same branch could always be taken.

hosc. tex; 14/10/2002; 10:47; p.5

6 S. E. Smith, C. L. Talcott

fork (fork(D)) A diagram is forked off which hereafter will have no direct
causal connection to the future of the current thread (hewenessages
could indirectly impose some causality between the two)k Pphral-
lel and fork operators are similar, but parallel threads tnexrgntually
merge, while forked threads are asymmetrical in that thieefibthreads
never merge.

skip (skip) Does nothing.

send gend(aq < My)) A message is sent tq with contents)y. There is a
requirement that message delivery be fair, in the sensatiyanessage
sent must eventually arrive at its destination.

receive feceive(aq < My)) A message matching/, is received by actor
aq, the pattern variables occurring iy are bound to the matching
values in the scope of thesceive. This statement blocks until a mes-
sage arrives matching its pattern. If none arrives, the caatipon path
is considered unfair and not admitted. Dually, if a messagess but is
never matched by ameceive, that computation path is also considered
unfair and is not admitted.

loop ([D] %) The diagram is iterated some numbetimes, wheren is
nondeterministically chosen from the interal. . co. The caser = 0o
corresponds to loop-forever. The textual syntax here ismthe core
language—it is defined in the macro library below, along wdhiants.

scope (o, ..., x, : D}) Brackets demarcate static scoping of state variables.
In the official textual syntax explicit variable declarattomust be given
(and the variables initially given arbitrary values), byt &n implicit
convention discussed below, bracketing alone may be uselkfioe
variable extent.

EOD (eod) Denotes the end of a causal thread in the diagram. This is also
not core syntax and is defined in the macro library.

pick (pick(x)) State variabler is assigned arbitrary contents.

fresh (fresh(x)) State variabler is given contents consisting of an actor
name not currently in use.

constraint (constrain(¢)) A constrainte is placed on the current state of
the computation, which must be met. Otherwise the compuigtath is
not admitted.

assertion @ssert(¢)) Anassertionyis made. Unlikeconstrain, anassert
that evaluates to false is an explicit signal of failure ahsgroperty, but

hosc. tex; 14/10/2002; 10:47; p.6

Specification Diagrams for Actor Systems 7

otherwise, an well-formed assertion (that evaluates tocdelan value)
has no computational effect.

assignf :=v) A variable is dynamically assigned a new value given by
evaluating the assignment bodyin the current environment.

recursion (rec X.D, X) A boxed diagram fragment may refer to itself by
name,X, soX occurring inside the box refers to the whole box.

recursion variable (X) X, is a countable set of recursion variables, with
X € X,.

In the textual language, sequencing is right-associativit inds most
tightly, followed by choice and then parallel compositianding most loosely.
Choice and parallel composition are also associative ardlaigram nota-
tion we treat them as multi-ary constructs rather than titggathe binary
construct.

We define some syntactic sugar which allows variable dawasmat a
scope boundary to be implici{.D} abbreviateqxy,...,z, : D} for state
variableszy, . . ., z, all occurring directly inD (not in a deeper lexical level)
aspick(z;), fresh(x;), orreceive(aq < My), with x; occurring inMy.

We use the convention thBikampleMacro(s, t,u) = D defines a macro.
Macros are just diagram producing functions: we will be fidreot to de-
fine self-referential macros. Macro parameterst,(u in the example) are
taken to be meta-variables ranging o¥érand not state variables. In order
to avoid ambiguity between the two kinds of variable, all avatiables must
be explicitly listed as the parameter to a macro. Certaitiesyis easily en-
codable via macros and so is not defined in the core grammee.dte some
examples.

Definition 2.1 (Diagram Macro Library):

eod: eod = rec X.(skip; X)

initialized pick: pick(z = u) = pick(z);constrain(z = u)
constrained pick: pick(z € X) = pick(z); constrain(z € X)
loop: [D] %> = recX.((D; X) @ skip)

finite iteration: [D] % =

pick(z € Nat);
rec X.constrain(x = 0) & constrain(z > 0);z:=x — 1;D; X

wherez is a state variable not occurring In

loop-forever: [D] *° = rec X.(D; X)

hosc. tex; 14/10/2002; 10:47; p.7

8 S. F. Smith, C. L. Talcott
if-then: if ¢ then D; else Dy =

(constrain(¢); D1) @ (constrain(—¢); Ds)
while-do: while ¢ do D =

rec X.(constrain(¢); D; X @ constrain(—¢))
abort path: abort = constrain(false)

failure: fail = assert(false)

initialized decl: {...,x =u,...: D} =

{...,x,...: constrain(z = u); D}
constrained decl: { ...,z € S,...: D} =
{...,z,...: constrain(z € S) : D}

constrained receipt: receive(aq <4 My € S) =

receive(aq < My); constrain(My € 5)

Translation from graphical diagrams into textual notati@mbtained by
inductively replacing the graphical syntax with the cop@sding textual syn-
tax listed above. Note that macros such asitheti al / constrai ned
pi ck/ decl macros do not provide atomic execution of the sequence of
actions in their expansion. Thus they have the “expectediasgics only if
not placed in parallel with diagrams that read/write theégresi/constrained
variables. Atomicity, if desired, could be obtained by gsmore complex
macros. Atop-levelSD includes an interface, notatéd)% . Top-level dia-
grams are actor system componefit$.() and are given meaning in terms of
a transition system from which sets of interaction pathsdaresed. We will
not always include the phrase “top level” but meaning shdigdtlear from
context.

SD's combine features typically found in concurrent objeaséd pro-
gramming languages— notions of local name, variable, assgt, loop,
if-then, and message send and receipt—with features mqne@aate for
specification language, including assertions, consgapitking a value from
a (possibly infinite) set of possible values. They allow ngrassing and the
dynamic generation of fresh names, a feature shared withrit@culus,
while obeying the locality (acquaintance) laws of actor paoiation [8]. As
we will see in section 4 the fairness properties of compoatidescribed
by SD's differ those of traditional actor languages. The notiércanstraint
is analogous to thassumepredicate of Dijkstra’s language [15], while the
assertion primitive is analogous to Dijkstrassertpredicate. The constrain

hosc. tex; 14/10/2002; 10:47; p.8

Specification Diagrams for Actor Systems 9

predicate in particular is an important element of the laggy greatly in-
creasing its power. A constraint may be any mathematicaligaiee, and a
constraint failing does not indicate a run-time error, digates that such
a computation path will not arise, i.e. the path is “canckile the middle
of computing” as if it never happened. This predicate is tinysossible to
implement in full generality, but it gives the specificatianguage significant
flexibility. Examples in the next section should make thieatcl There are
some surface similarities afonstrain and assert with the ask and tell
agents of concurrent constraint programming [37]. Tellst@ints restrict
the solution space, and ask constraints fire only when thetgndition is
in the solution spaceconstrain has some commonality with tell in that it
restricts the solution space, but the case of unsatisfialidlihandled very
differently—in our system the entire computation vanishg# it never hap-
pened, whereas in CLP, failure value is returned. The askt@nts are a
guarded, blocking form of constraint which has no real amadohereSD as-
sertions are used to express properties of state variatipgea points in the
computation, and can be used to express both safety an@disgmmoperties
as the examples below will demonstrate. Assertions are asra@abserving
the system as it evolves. A well-formed assertion (one thedys evaluates
to a boolean) has no effect on the interaction semantics 8Can

3. Using Specification Diagrams

In this section we illustrate the full range of functionglif the language via
examples. Starting with simple examples that show how uarfatterns of
message passing may be specified, we progress to examplew afiffer-
ent specifications may be related and how more advancedriespmay be
expressed.

3.1. EXPRESSING PATTERNS OF MESSAGE PASSING

We give here a series of examples illustrating I#®iconstructs may be used
to specify component behaviors and scenarios, and giveghriolea of the
meaning of diagrams as sets of interaction paths.

3.1.1. Simple Memory Cell
This simple cell holds a single value, and respondsstoandget messages.

Cell(a) =

hosc. tex; 14/10/2002; 10:47; p.9

10 S. E. Smith, C. L. Talcott

Cell(a) = CellInteractor(a,ci,w) =
pick(value) a< set(0)@ci
0.0 ad set(5)@ci
)) K\| ')
a< set(value)@c adget@c L I\) cgac
c<dack c<Qreply(value T oot @ci

ci<reply (value)
————
w < value
i .

Figure 2. A Memory Cell and an Example Cell Interactor

{ pick(value); (* cell value, initially arbitrary *)
[(receive(a < set(value)@c); send(c < ack))
S
(receive(a < get@c); send(c <reply(value)))] %>}

The corresponding graphic&D appears on the left of Figure 2. The.". . co”
iteration models all possible environment behaviors: thdrenment may
send0, an arbitrary finite number, or infinitely mamset /get requests. In
the a < set(value)@c message pattern, variablesiue and ¢ are implic-
itly declared pattern variables, bound by the receipt actir example, the
message: < set(2)@sam matches this pattern, bindingilue to 2 and ¢ to
sam. send(c < ack) is an asynchronous send, and thus a receive of another
set/get request can immediately follow, even before #w has arrived
at its destination. The{"... }” around the whole specification is the static
scoping construct. By the implicit convention of the prexdosection, the
notation without any variables listed (as above) indicats/ariables are
declared. So, the above is shorthand fprélue, a, ¢ : ... }."” The notation
(* ...*) isusedtoadd comments to text&iD's.

A top-level (interfaced) specification for a memory cel{@ell(a));. The
meaning of this top-level diagranCell(a))3], is a setlp¢,; of interaction
paths. TheSD meaning functiori-] is formally defined in Definition 4.10 of
Section 4. Interaction sequencedijny include ones beginning as follows:

(1) in(a<set(0)@c),out(c<ack),in(a < get@c), out(c<reply(0)),...

(2) in(a<set(0)@c),in(a < get@c), out(c<reply(z)), out(c<ack),...
for z arbitrary

(3) in(a<set(0)@Qc),out(c<ack),in(a < get@c’), out(c’ <reply(0)),...

(4) in(a<set(0)Qc),out(c<ack),in(a <set(1)Qc’),

in(a < get@Qc), out(c < reply(l)),out(c <ack)...

hosc. tex; 14/10/2002; 10:47; p.10

Specification Diagrams for Actor Systems 11

(5) in(a<set(0)@c),in(a <set(5)Qc), out(c<ack),

out(c<ack), in(a < getQc), out(c < reply(0)),...

In the second example, since tget is sent before arrival of theck, the
value received may have been the original (arbitrary) vplaeed in the cell.
The third example shows how customers may be different foh ezessage.
The fourth example shows howgeat may in fact get a reply which incorpo-
rates a previouset that has not in fact been observallyk’ed yet, due to
internal buffering delaying the finalck. Example five shows how multiple
set requests will not necessarily be handled in the order theyeda, since
there is buffering inside the system which is independeiraal order.

In the operational semantics f8D's, each internal action appears in the
computation pathsand these internal actions are then projected out to give
the interaction paths. An example computation path whiallcc@roduce
interaction path (1) above could start as:

pick, in(a <set(0)Qc), choose(l), receive(set(0)Qc),
send(c < ack), out(c < ack),...

pick is the choice of arbitrary initiabalue, choose(l) indicates the left
branch of the choice was taken, and the intem&teive/send are also
actions in the computation path. The internal actions dr@rajected out
in forming the interaction path (1) above, since they arepaot of the ob-
servable behavior of the system.

Choice,®, in SD's most closely corresponds to what is often called “in-
ternal” choice in process algebra: a coin is flipped and oaeadtr is taken.
However, it is not quite that simple, because the combinatifochoice and
the constraints imposed by fairness of message deliveoy diéxternal”
forms of choice to be represented with the internal choiceratpr. In par-
ticular for theCell, the choice between whether to try to receivea or get
is made internally by a coin fligut, if the get branch was chosen and no
get messages are forthcoming, the path is unfair and will naearT his
subtle interplay between choice and fairness is one of thtufes of the
language that takes some getting used to, but it is an elegahpowerful
mechanism. This topic is discussed further in Section 4&l8w, after the
formal semantics have been given.

The interaction of path (5) may be expressed diagrammitiei this
Celllnteractor, also shown in Figure 2:

Celllnteractor (a, ci,w) =

{ send(a < set(0)Qci); send(a < set(5)Qci);
(receive(ci < ack) | receive(ci < ack));

send(a < get@Qci); receive(ci < reply(value)); send(w < value) }

hosc.tex; 14/10/2002; 10:47; p.11

12 S. F. Smith, C. L. Talcott
The finalvalue sent to externadv in combined top-leveED

(CellInteractor (a, ci, w) | Cell(a))?

w

might be either 0 or 5. This is an example of us®i's to describe possible
scenarios. Note that ifi were a receptionist of the top-level diagram, the final
value sent could be arbitrary since thek messages could have been sent in
from the outside. A path with this behavior is

in(ci < ack), in(ci <ack), out(w <u), ... for u any message

If the Celllnteractor had created a fresh actor name to serve as customer via
fresh(c) as its first step, and usedinstead ofci in the set andack mes-
sages, the above anomalous behavior would not arise siaegkhchannel
would not be externally visible.

3.1.2. Ticker

A ticker is a simple monotonically increasing counter whieplies totime
messages with its current count value. This example iltss$rthe unbounded
nondeterminism present in actor computations. A hightlepecification is
as follows; see Figure 3 for a diagram.

Ticker(a) =
{ pick(count € Nat);

[[receive(a <time@x); send(x < reply(count))] %;

count := count + 1] %~}

This succinct specification expresses the fact that thetaamstay constant
for finitely many Q. ..w) time requests, but then must increase. The count
may also be repeatedly incremented without receivingtame requests, if
the0...w repeatedly choosdés However, if there is aime request waiting

to be received, then a non-zero choice must eventually oéctop-level
ticker is(Ticker(a))g. The interaction paths if{Ticker(a))g] consist ofa <
time@c requests comingn and replies: < reply(count) goingout of the
system. It is incorrect to state that theunt reply values sent out will be
monotonically increasing, due to local buffering that mawdn happened,;
but, the observedount values must eventually increase.

3.1.3. Ticker Factory

This example of a factory for producing tickers shows howgliractors may
be dynamically generated, and shows a useo@k. It also appears in Figure
3.

TickerFactory(a) =

hosc. tex; 14/10/2002; 10:47; p.12

Specification Diagrams for Actor Systems 13

Ticker(a) = TickerFactory(a) =
pick(count € Nat) "‘% 000
r__1§..°° ——

X0
=
a< time@x a<inew@c >
_ x<reply(count) fresh(r)
[

count := count + 1 = reply(?)

At Ticker(?)
N

Figure 3. High-level Specification of a Ticker and a Ticker Factory

{[receive(a <new@c);
fresh(t);
fork(Ticker(t));
send(c<reply(t))] %}

The interaction paths if TickerFactory(a))g] contain interactions with the
ticker-factory actor: incoming requests(a < new@c) and associated out-
going repliesout(c < reply(t)). t is the name of the newly created ticker
actor and is exported in the reply. This causés be added to the set of re-
ceptionists, initially jus « }. Thus the interaction paths contain as sub-paths
interaction paths for each exported ticker-actor.

3.1.4. Function Composer
In this example we define a distributed method for compugingf for com-
posable functiong andg: the functions are computed by two different actors
that are coordinated by a third actor. Graphical diagramthfe specification
are in Figure 4.

For any actor nameg, and functionf € V — W, the following dia-
gramF(a, f) specifies a component that accepts requests @bthe form
compute(v)@Qc and sends te areply(f(v)).

F(a, f) =
{z,zc: [receive(a<compute(z) @ zc); send(zcareply(f(x)))] %>}

For any actor names, af , ag, FC(a, af , ag) specifies a component that
accepts requests 0of the formcompute(v)@c, asksaf to compute onw,
and then askag to compute on the result fromuf, sending that result ta

FC(a, af , ag) =

hosc. tex; 14/10/2002; 10:47; p.13

14 S. F. Smith, C. L. Talcott

FC(a,af,ag) =
Faf) = T 000
o
a< compute(x)@xc
"'% 000 fresh(xf)
o af <compute(x)@xf
a< compute(x)@xc xf<reply(y)
xc< reply(f(x)) Fresh(xg)
[ag< compute(y)@xg
[xg<treply(z)
_ xc< reply(z)

b
Nt

Figure 4. Function Composer Specifications

{ =,y,2,zc,2f 29 :
[receive(a < compute(z) @ zc); fresh(zf); send(af < compute(z) Q zf);
receive(zf <reply(y)); fresh(zg); send(ag < compute(y) @ zg);
);

receive(zg <reply(z)); send(zc <reply(z))] %> }

The fresh namesf andzg are private nameBC sends as the customer to the
targetaf or ag only. The target in turn replies to this actor name, guaeintge
the reply came from the target or the target's accomplicd,rating out the
possibility of spoofing. This is because outsiders may oelydsto actors
in the receptionist set, and these names will not be theres Tha context
whereaf is the name of arf computer andig is the name of @ computer,
FC coordinates:f andag to become go f computerC(a, f, g, af , ag) puts
FC in such a context:

Cla, f,9,af ag) = (FC(a, af , ag) | F(af, f) | F(ag, 9))

The full specification ofC(a, f, g, af , ag) appears diagrammatically in Fig-
ure 5.

3.2. RELATING SPECIFICATION DIAGRAMS

SD's can be used in a wide range of roles: as an implementatici tke-

scription expressing low-level code-like details, for ghtlevel but precise
behavioral description; and for a description of abstraciperties of the
possible interactions of a system. In this section we intcednotions of
interaction refinement and equivalence used to reédids. These relations

hosc. tex; 14/10/2002; 10:47; p.14

Specification Diagrams for Actor Systems 15

Clafgafag) =

T 0..00
[
a< compute()@xc
fresh(xf)
af <compute(x)@xf
xf<areply(y) 1 e
fresh(xg) af <t compute(x)@x:‘__l
e reply(f())
(S ~
ag< compute(y)@xg - 0.e0
xg<reply(z) ag< compute(x)@xc
e xc areply(s (@)
hedd d
N —

\/

Figure 5. Composition of the Function Composer

are defined in terms of the semantic functjorj (see Definition 4.11 in sec-
tion 4), which gives the semantics of a top-level diagramset af interaction
paths.

3.2.1. Interaction Refinement
One specification is aimteraction refinementf another if every interaction
path permitted by the first is also permitted by the second.

Definition 3.1 (Interaction Refinement):

(DrYe & (D) it [(D1)?] € [(Ds)?]

The notion of refinement appears in many specification fasme in-
cluding: algebraic specifications [43], Back’s action syss$ [7, 6], the Abadi
and Lamport work on refinement mappings [E[) refinement corresponds
to theirimplementgelation), and in the work on CSP [26, 35]. CSP is the
most closely related to our approach and we discuss thisaeship ing 6.

hosc. tex; 14/10/2002; 10:47; p.15

16 S. E. Smith, C. L. Talcott

LiveTicker(a) = CountingTicker(a) =
0..00 pick(count =0)

ma o

a<d time@c 0-

Y1

a<time@c

>
>

pick(count) _ c<reply(count)

_ c<reply(count)
| -
o

count := count + 1

s

Figure 6. Live Ticker and Counting Ticker Specifications

3.2.2. Refinement and the Ticker
As an example of using the refinement relation consider thewimg SD
(shown in Figure 6):

LiveTicker(a) =
{[receive(a<time @ ¢); pick(count); send(c<reply(count))] %>}

This specification of the ticker only requires that all tineguests receive a
reply. The refinement relation

(Ticker(a))y é (LiveTicker(a))gy

then is in effect asserting the liveness of theker. (Note, such a liveness
property was termecksponsivenedsy Hewitt [5].)

Another form of refinement is when 018D (thought of as an implemen-
tation) is more deterministic than the other (thought of sagexification). For
the ticker, an implementation could be

CountingTicker(a) =

{ pick(count = 0);
[receive(a <time @ ¢);
send(c < reply(count));
count := count + 1] %>}

This implementation replies with a number one bigger, re§jrthe Ticker
specification.

(CountingTicker(a))y é (Ticker(a))y

Note that by transitivity,

(CountingTicker(a))g é (LiveTicker(a))g

hosc. tex; 14/10/2002; 10:47; p.16

Specification Diagrams for Actor Systems 17

3.2.3. Maximal and Minimal Diagrams
To better understand the dynamic nature of receptionistesernal actor
sets, consider the following specification.

MaximalSpec(po, Xo0) =
pick(rho = po, chi = xo);
[pick(r € rho); receive(r <m); chi:= chi U acq(m) — rho
@
pick(z € chi); [fresh(q)] %¥; pick(w);

send(z < x); rho := rho U acq(z) — chi
] 0...00

MaximalSpec specifies the largest possible set of interaction paths $gsa
tem with interface(p, x). In particular it has the property of beimgaximal

(A
with respect to the C relation:

(D)? é (MaximalSpec(p, x))%

for any specification diagrafD)%. The specification receives arbitrary data,
and sends arbitrary messages to its acquaintances. Tdygédneral in this
regard, it needs to create arbitrarily (finitely) many newnea for possible
insertion into each message it sends out; that is the pugfdbe fresh(q)
loop above. The value afick(z) will have acquaintances that may include
these fresh names. The diagram variabfes and chi serve to keep explicit
track of the evolvingy andy sets. If a new name is received in a message, it
is added tcext and then may later be the target of a messafiecimalSpec
is the analog of the CSP procdskaos 4 which can participate in any action
(over its alphabetl) and can also refuse any actidthaos 4 is refined, in the
CSP sense, by every process with alphabet

At the other extreme of the refinement relation, is the follmpdiagram.

MinimalSpec = {constrain(false)}
For any receptionistg, and externals, the top-level diagram
(MinimalSpec)%,

has no admissible interaction paths as all paths will betatidoy the failed
constraint. The empty set of interaction paths can also peeszed without
appealing taconstrain, by instead requiring that a message be received that
can not possibly be delivered.

MinimalSpec = {fresh(x);receive(r <nil)}

In particular, MinimalSpec, just above must receive a message for a newly
created actor whose name is not known to any possible sefdes. top-
level specificatiofMinimalSpec)¥ is minimal with respect to the refinement

hosc. tex; 14/10/2002; 10:47; p.17

18 S. E. Smith, C. L. Talcott

relation

(MinimalSpec)?, é (D)%

There are no “empty” processes in C8RnimalSpec can be thought of as
an inconsistent specification, emphasizing the logicapecsication aspect
of SD's. The minimal CSP procesSTOP 4, has a single trace, namely the
empty trace, and can refuse any subsetdofThis process corresponds to
the top-level specification diagrafaod)y, which also has a single admissible
interaction path, the empty path with interfage x), and we have

(MinimalSpec)?, é (eod)?

but it is not the case that

(eod)? € (D)

for any top-level diagran{D)%. For example, ifD = {receive(a <nil)}
with a € p, then the empty interaction path is not an admissible path/iy,
sinceD specifies that exactly one message be received. The diffetare is
that interaction semantics is based on complete fair coatipus rather than
just the finite computations.

3.2.4. Input Restriction

We often want to consider only the interaction paths of a camept in which
inputs from the environment are restricted to a subset ofrtbgsages under
consideration. For example, we are only interested in mplitompute re-
quests to the function composer. The other messages andéatéor internal
communication only.

Definition 3.2 (Input restriction): LetMP, be a subset d¥IP then(D)% |
MP, is the restriction of the interactions of top-level diagrai? to inputs
in MP,,. In particular

[(D)§ | MP,] = [{D){] | MP,

where for any seP of interaction pathsP [MP, is the subset of interaction
paths inP such that every input interactiotin(mp), hasmp € MP,,.

3.2.5. Input Restriction for the Function Composer

For example, |eMP conpute be the subset dVIP with contents of the form
compute@c and target. Then the interaction paths ¢F(a, f, g, af , ag))§ |
MP conpute are those in which onlgompute requests are accepted from the
environment.

3.2.6. Interaction equivalence

When two specifications each refine the other they are said itwtdraction
equivalent This means that their observable behaviors are identical the

hosc. tex; 14/10/2002; 10:47; p.18

Specification Diagrams for Actor Systems 19

pick(count =0) -
ChoiceTicker(a) = a<tick pick(count =0)

ParTicker(a) = a<dtick
S
adtick i
a< time@x —_— a< time@x
e ———————— e

count := count + 1 x areply(count)
adtick

a<dtick

count := count + 1 x <reply(count)
————

adtick

o

a<dtick

Figure 7. Alternate Codings: Choice Ticker and Parallel Ticker Sfeaiions

point of view of the environment. For example if an implenagian fully
and faithfully satisfies a specification, the two must hawe thme sets of
interaction paths, and thus they are interaction equitalen

Definition 3.3 (SD interaction equivalence):

(D)% & (D)o iff [(Dr)] = [(Ds)2]-

3.2.7. Interaction Equivalence for the Function Composer

A good example of interaction equivalence is found in thetexinof the
function composer example above. A high-level specificatay computing
go fisjustF(a,g o f) which directly computeg o f. We may then assert
the following.

Theorem 3.4:

(C(a, f,9, af ,ag))§ ~ (F(a, g0)

This theorem will be proved in Section 5.3. The proof illasts the use
of semantics-based technigues for reasoning aBbist

3.2.8. Interaction equivalence and the Ticker

A more low-level specification of a ticker might uséck messages to update
its counter: every time it receivestack, it increments its counter and sends
itself anothertick. (also see Figure 7):

ChoiceTicker(a) =

hosc. tex; 14/10/2002; 10:47; p.19

20 S. E. Smith, C. L. Talcott

{ pick(count = 0); send(a <tick);
[receive(a<tick); count := count 4+ 1; send(a < tick)
S
receive(a<time @ x); send(x < reply(count))] %+°;
receive(a < tick)
(* eat final tick if finite iteration *) }

Another reasonable alternative to express this same id&a Bicker, which
uses parallelism between thdack and time instead of nondeterministic
choice (also shown in Figure 7):

ParTicker(a) =
pick(count = 0); send(a < tick);

[receive(a < tick); count := count + 1; send(a < tick)] ®

[receive(a <time @ z); send(z < reply(count))] %>

No final receive(a < tick) is needed in the case ®farTicker(a) since
the tick receiving thread does not terminate, even if thiee receiving
thread does. Th&icker, ChoiceTicker, and ParTicker are equivalent in
a context where actar receives onlytime messages from the environment.
For this purpose we again use the restriction operator tagemteractions
to relevant paths. L&MP.;,. = {a <time @c | ¢ € A andc # a}. Thus
the interactions of ChoiceTicker(a))j [MPyiqe are those in which only
time messages are received from the environment.

Theorem 3.5: '
(ChoiceTicker(a))g | MPxine ~
(ParTicker(a))§ | MPyige =
(Ticker(a))g-
Note that(Ticker(a))j | MPxine L (Ticker(a))g, sinceTicker(a)
does not acceptick messages. These interaction equivalence relations are
established in Section 5.2 below.

3.3. ASSERTINGPROPERTIES OFSPECIFICATIONS
DIAGRAMMATICALLY

Safety and liveness properties can be asserted directig B2 language. We
present three different techniques for asserting safedyliseness. The first
method is based on interaction refinement. The second isl lzesdiagram-
matically defining an environment which requires the spestion to have the

hosc. tex; 14/10/2002; 10:47; p.20

Specification Diagrams for Actor Systems 21

proper behavior. The third method is by directly decoratimg specification
with logical assertions.

The underlying idea of the first method is that a top-le8& can be
thought of as defining a predicate on interaction paths (as@hliveness con-
dition). The assertion that all behaviors of one top-levagchm(D’)5, have

the property defined by anothéb)? is then just stating thatD’)5 c (D)%.
An example of this method was in fact given earlier: the prgpthat all
time messages sent to tAécker will receive a reply was expressed by the

LiveTicker specification, and the stateméfiticker(a)) é (LiveTicker(a))g
asserts th&icker has such a propertliveTicker actually states a stronger
property than liveness — it asserts a bijection betweenvezand sends. It
is fairly easy to show directly that tHeicker has the liveness property; but,
this technique will also work for more complex behaviors.

A second and perhaps more convincing way to assert liveadssspeci-
fying an environment which requires liveness. For Thieker, the environ-
ment should assert that allime requests are handled. Thesert pred-
icate is used for this purpose (more precisely fla@1 macro, defined as
assert(false)) in the following LiveTickerEnvt:

LiveTickerEnvt(a) =
{[fresh(c); send(a<time @ c¢); (receive(c<z)® (fail; eod))] %>}

Failure arises only when there istame request that does not get answered
—thereceive choice is never possible and so failure is the only possibili
If failure were chosen when there was in fact a reply to beivedethat path
would be unfair because a message was never receiveeodhie needed in
the failure branch of the choice to ensure that if failuregeays it is the end of
the computation. Otherwise the failure branch could bertakedomly and
pending messages could be received later. Asserting

OK((Ticker(a) | LiveTickerEnvt(a))%)

says that there are no paths of this combined system whidiaiooafail
event; see Definition 4.12 in the next section for the formefirdtion of
OK(-). Although this is an assertion about the possible commurtaiaths, it
implies the desired responsiveness asserfioveTickerEnvt is an example
of a general form of diagram that can be used to specify resypamess to
requests and to reduce the work of establishing such a pyojpereasoning
directly about possible computations.

The third manner in which properties may be diagrammajicadiserted
is that safety properties may be directly asserted in theifsgpetion itself via
assert decorations. An example of a specification decorated witafetys
assertion iSafeTicker(a) (shown in Figure 8), a ticker which asserts succes-
sive outputs are non-decreasing.

hosc.tex; 14/10/2002; 10:47; p.21

22 S. E. Smith, C. L. Talcott

MonotoneTicker(a) = SafeTicker(a) =

pick(count € Nat)
pick(prevcount = 0)

pick(count € Nat) 0..00
pick(prevcount = 0) r__10“0)
0..00 - T
Pt a<d time@c
a< time@c
EEE—— c < reply(count)
__ c<reply(count)

assert prevcount <= count
pick(count s.t. prevcount <= count) prevcount .= count

prevcount .= count

count := count + 1

Figure 8. Examples of expressing assertions via diagrams: the Moeroamd Safe Ticker
specifications

SafeTicker(a) =
{ pick(count € Nat); pick(prevcount = 0);

[[receive(a<time @ ¢); send(c<reply(count));
assert(prevcount < count); prevcount := count | 0"'“’;

count := count 4+ 110>}
The safety assertion f&afeTicker
OK((SafeTicker(a))y).

says that the sequence of valuescefint sent in replies is non-decreasing.
We can combine this with method 1 to assert a correspondiogepty for
Ticker

(Ticker(a))y é (SafeTicker(a))g
In fact
(Ticker(a))y L (SafeTicker(a))y

This follows from a general result that &D can be decorated with new dia-
gram variables, assignments to these variables, andiassestthout chang-
ing the interaction path semantics.

Safety assertions can also be expressed directly comhiméngse of addi-
tional diagram variables and the diagram as predicatepirgttion (method
1). As an example consider thdonotoneTicker specification, also shown
in Figure 8:

MonotoneTicker(a) =

hosc. tex; 14/10/2002; 10:47; p.22

Specification Diagrams for Actor Systems 23

{ pick(count € Nat); pick(prevcount = count);
[receive(a<time @ ¢); send(c < count);

pick(count s.t. prevcount < count); prevcount := count] %+ }

and the assertion

(Ticker(a))y é (MonotoneTicker(a))y

which analogously t8afeTicker is asserting thatime replies are monotone.
This monotonicity condition could also have been asseryeghtenvironment
in the manner oliveTickerEnvt above. Some properties may not be easy
to assert diagrammatically, but many common forms of a@ssecan be nat-
urally expressed in this manner. Although the languagetisrivial to learn,
we believe for practitioners its operational basis and lgiag syntax will
make it easier to learn than e.g. temporal logic, and thusweage increased
use of formal methods. Decision procedures and formal mgstems exist
for many temporal logics. Tools do need to be be developedHtecking
SD properties in restricted but common cases, or for automiftimserting
runtime checks when an assertion can not be establishee: bgdls at hand.
Such tools are an important topic for future work.

4. Semantics of Diagrams

In this section we study the semantics of specification diag: We first de-
fine an operational semantics, then use this to determingethaf interaction
paths[(D)%] defining the behavior of top-level diagrart®)5 .

The operational semantics of a top-le&D is the set of allowed com-
putation paths described by the diagram. A computation {ga#m infinite
sequence of internal steps interleaved with interactiaikis tive environment.
Internal steps traverse the diagram, modifying the diagtate, sending and
receiving messages using a local message pool, forking imeads, creat-
ing new names, evaluating constrairg®; Interactions with the environment
allow messages to receptionists to come into the system asdages to ex-
ternal actors to be emitted from the system. Allowed contparta must obey
certain constraints on message delivery and give faintreat to independent
threads of activity. A more abstract (denotational) semathe interaction
path semanticss derived from the allowed computation paths semantics by
observing only the interactions with the environment.

The computation paths of a component are given by a labaetedition
relation on configurations derived from local reaction sul& configuration
represents a snapshot of an executing component. Thetiwarisibels cor-
responding to local reaction rules give us an operatioreal wif the internal

hosc. tex; 14/10/2002; 10:47; p.23

24 S. E. Smith, C. L. Talcott

workings of a component. They are useful for defining notimifairness and
for reasoning about syntactic transformations. Inteoacemantics hides
these internal labels, allowing only the interactions wlhith environment to be
observed. In fact, what we will define is an actor theory [4),se€mantics for
SD's. Thus we shall call the transition system #pecification diagram actor
theory. We will fill in enough detail that this paper can be read iretagently
of the above references.

4.1. PRELIMINARIES

We begin with some mathematical preliminaries. To simptigmputation
paths we consider diagram expressidisskip, skip; D and D to denote
the same diagram. This is consistent with the graphical femte sequential
composition of a diagram with a straight line does not chatigegraph.
Also, we will equateskip | skip andskip. To define the local rules, we
use the approach of [19] and factor a (runtime) diagianmto a redexD,.qx
and reduction contexR such thatD = R[D,q] identifying D,qx as the
next redex to be reduced. Notation is also needed for loakngnodifying,
and extending variable environments. The concepts of tegtucontext and
environment are in fact intertwined: environments arelleezaarticular sub-
diagrams (so e.g. parallel threads may have differing enaiients) and so
are spread around the reduction context. As discussed tiorset, these
local environments are finite functionse X4 — U which hold the current
state of diagram variablé§ . Extension/updatingyg; v1, is defined as usual.
v0; 71 1S the finite functiony such thaDom(y) = Dom(vp) U Dom(~;) and
for x € Dom(7),

v(z) = if x € Dom(v1) then v, (z) else yo(x).

v{z +— u} abbreviatesy; {x — u}.

We extend the language syntax to include syntax for bindargables in-
side an executing diagraryy : D[} indicates a lexical scoping constrydD }
under which execution is actively occurring, with curremtdl environment

! The grammar of reduction contexts is
R= e+
R| D+
D|R+
R; D+
{r:RE
e is called a hole, and is a place holder for a redex. Each riesfucbn-
text has a unique occurrence efand R[D] denotes the act of replacing

hosc. tex; 14/10/2002; 10:47; p.24

Specification Diagrams for Actor Systems 25

that occurrence iR with diagramD. Note that, unlike the case for tradi-
tional sequential languages, the decomposition of a diaggaot necessarily
unique, since a parallel construct typically has two deausitfpns, allowing
the redex to be chosen from either part.

Notation is next defined for manipulation of the environmentbedded
in a reduction context. The basic operations needed indiider to look up
the value ofr in the environments oR, and R{z +— u} to modify the value
of an already-declared variahle ¢(R) extracts the environment implicit in
R.

Definition 4.1 (e(R), R Q z, R{z — u}):

e(e) = 0 the empty finite function
e(R|D)=¢€(D|R)=¢R;D)=e(R)

c({v: R}) =7 e(R)

RQz = e(R)(x) if z € Dom(e(R))

o{riul—e

(R | D{z— u} = (D | R){z —u} = (B; D{x — u} = R{z — u}

{y: R {z = u}
= if 2 € Dom(e(R)) then R{z — u} else {y{z — u} : R}

We use the usual convention for multiple assignmentt i a list of
distinct diagram variables anglis a list of values of the same length, then
{Z — u} is the environment mapping each variable to its correspondi
value (order of assignment does not matter here).

The value of an expressiany occurring in a redex situated in a reduc-
tion contextR is obtained by applying the expression to the environment
associated withR: uq(e(R)).

We want to ensure that the actor acquaintance laws are abayexttor
can only know the name of another actor if it was told that nateeation
time (hence the creator must have known the name) or if itivedethe
name in a message, or if it created the actor with that namelef@ermine
the actor names occurring in messages or other values, wenasgiven
an acquaintance functioacg : U U Uy — P, (A) and lift this function
homomaorphically to environments and diagrams, using tbetlfeat state and
recursion variables have no acquaintances. We requireettzdiiation not
generate any new acquaintances;(uq(vy)) C acq(uq) U acq(7y).

hosc. tex; 14/10/2002; 10:47; p.25

26 S. E. Smith, C. L. Talcott

4.2. OPERATIONAL AND INTERACTION SEMANTICS

Now we define the specification diagram actor the®b/'h, that is, the tran-
sition system and the admissibility requirements thatrdetes the allowed
computation paths of a top level diagram. The states of Hresifion system
are calledconfigurations A configuration has an interface and an internal
part. The internal part contains the execution state ofyetem and the pool
(multiset) of pending message packets. The transitiors raile derived from
local reaction rules by lifting them to configurations andliad rules for
interaction with the environment. We first define the exerustates, and
local reaction rules. Then we define configurations, thestt@am relation on
configurations, and the admissible computation paths.

Definition 4.2 (SDTh states and reaction rules): The execution states of
SDTh are diagrams in the extended syntax. The labelled reaadties for
SDTh are given in Figure 9. The left-hand side of each rule has dihm f
R[D,4x] WwhereR is a reduction context anfl, 4 is theredex In thesend and
receive rules we use the convention that messages received appmar ab
the arrow and messages send appear below the arrow.

Definition 4.3 (Configurations): A configuration has the fornk’ = I/
where(p, x) is the interface and is the interior. An interior has the form
I =D - pwhereD is a diagram execution state as above, atigla multiset
of message packets, and we defineu’ tobeD -y -y’ if I = D - u. Thus,
expanding definitionsi{ = (D -)%,

The computation paths of a configuration are given by a labialansi-

tion relation with elements of the forft ‘% K. The transition labet! is
either an internal label, an input label, an output labetheridle labelidle.
Theidle label indicates absence of action, either because no rpjey, ar
simply to allow “time” to pass. An internal label has the fot(p,.) wherel

is a rule label, and:, is the sent message packet, if any. An input label has
the formin(a < M), indicating a message is arriving from the environment.
An output label has the formut(a < M) indicating a message is being
transmitted to the environmerit.

Definition 4.4 (Transition rules and Computation Paths): The transition
rules for configurations are the following.

e
(r) <D0'Nr'ﬂ>)p<ﬂ><D1',us‘ﬂ>)p(

if 1:Dy, £ Dy isadiagram rule, and
Ms

1 To simplify the presentation we have suppressed bookkgédpformation in execution
states and transition labels which are used to avoid migfsetor names and to make precise
the conditions for admisability.

hosc. tex; 14/10/2002; 10:47; p.26

Specification Diagrams for Actor Systems

choose(l): R[D;® D,] — R[Dj] similarly for choose(r)
fork: R[fork(D)] — (R[skip] | {e(R): D})
receive: Rreceive(aq < My)] =% R'[skip]

if T are the diagram variables occurringhiy,
u are values such thatp = aq(e(R)) <« Ma({T — u}),
andR’ = R({Z — u})

send: R[send(aq < My)] P R[skip]

wheremyp = aq(e(R)) < Ma(e(R))
pick: Rlpick(z)] — (R{x — u})[skip] if acq(u) C acq(R)
fresh(a): R[fresh(z)] — (R{z — a})[skip] if o & acq(R)
assert(b): Rlassert(¢)] — R[skip] if b = ¢(e(R)) € Bool
constrain: R[constrain(¢)] — R[skip]

i 6(e(R)

Rlconstrain

if (e(R)) # true anda & acq(R)
assign: Rz :=v¢] — R'[skip]

if B = R{z — ¢(e(R))}
rec: RlrecX.D] — R[D[(recX.D)/X]]
scope-in: R[{z1,...,zn: D}] — R[{v: D[]

Dom(y) = {z1,...,2,} and

acq(y(xi)) € acq(R) U acq(D) for1 <i <n

) = true
(

)] — Rreceive(a <nil)]

scope-out: R[{v:skip}}] — R[skip]

Figure 9. Reaction Rules for Diagrams

any actor names generated by the diagram rule are fresh

(in) Ir in(a<M)

5 ((I-aaM))?

xUacq(M)—p)
if a€ep and acg(M)N (acq(I)—x) Cp
(u) ((I-aah))r 2D, pouteesd=0)if o ¢ y

. idle
(idle) 1§ —1%

27

hosc. tex; 14/10/2002; 10:47; p.27

28 S. E. Smith, C. L. Talcott

Computation paths € P are infinite sequences of the form

-y o
m=[(D; - pi) ¥ = (Dig1 - i) 3.7 | i € Nat]

where each element is a transition rule instance. Note thraidering only
infinite sequences is not a restriction, since a computatiah terminates
after finitely many steps can be made infinite by use ofithiee transition.

Example 4.5 (An Example Computation): We now illustrate the rules via
an example computation. Recall the function composer dagiC of Sec-
tion 3. We will show one complete pass through the loop. Fsrgbrpose we
define additional diagrams that correspond to positionfénunfolding of
the initial state diagram using the environmento specify currently bound
variables. Lety contain the bindinggz — v,y — w, z — u, zc — ¢, zf —
cf ,xzg — cg} and we define

FCO(a, af, ag,y) = { v : rec(X)

([receive(a < compute(z)); fresh(zf); send(af < compute(z) @ zf);
receive(zf <reply(y)); fresh(zg); send(ag < compute(y) Q zg);
receive(zg <reply(z)); send(zc < reply(z)); X]

>
skip [})

(recall[D] % abbreviatesec X.((D; X) @ skip))
FCl(a, af , ag,7y) =
{7 : receive(zf <reply(y)); fresh(zg); send(ag < compute(y)Qzg);
receive(zg <reply(z));send(zc < reply(z)); FCO™ (a, af, ag) |}
FC2(a, af , ag,7y) =
{7 : receive(zg <reply(z));send(zc < reply(z)); FCO™ (a, af, ag) }
whereFCO0™ is FCO with the outermost scoping construgt : ... [, removed

Using the reaction rules we obtain the following example potation path
in which there is a singleompute request from the environment angd
contains some (arbitrary) initial bindings for the diagreamiables.

(FC(a, of, ag)>gf,ag

scope- in
_—

(FCO(a, af , ag,0)) Zf,ag

in(a<compute(v)Qc)

hosc. tex; 14/10/2002; 10:47; p.28

Specification Diagrams for Actor Systems 29

a

(FCO(CL, afa angO) cad Compute(v) Qc > af ,ag,c

rec;choose(l);receive(a<compute (v)Qc);fresh(cf);send(af <compute(v)Qcf)

(FC1(a, af,ag, 1) - af <compute(v)Qcf) gr .. .

wherevy; = yo{x — v, zc — ¢, zf — cf}

out (af <compute(v)Qcf) in(cf<reply(w))

(FCl(a, af ,ag,m) - of areply(w)) 47

receive(cf<reply(w));fresh(cf);send(ag<icompute(w)Qcg)

a,cf

(FC2(a, af ag,v2) - ag < compute(w)Qcg) i, .

whereys = v1{y — w,zg — cg}

out (ag<compute (w)Qcg) in(cg<reply(u))

(FC2(a, af , ag,y2) - cg areply(u)) o0

receive(cg<reply(u));send(c<reply(u))

(FCO(a, af, ag,v2) - c<reply(u) > Z}?{l;i

out(c<reply(u))
T

< FCO(CL, a’fv ag>/72) > Z}f{z;i

Given the definitions of the states, reaction rules, andcateddditional
admissibility information, the actor theory frameworksals which compu-
tation paths are admissible. Rather than introduce thergedefinition, we
state a lemma that gives an equivalent characterizatiodrofssible compu-
tation paths for th&D actor theory. To ensure that the acquaintance laws are
not violated, freshness constraints on actor names mustdrgieted in terms
of the computation path up to the point of rule applicatiohisTis because
some names that have been used may not occur in the currdigucation.
In addition, two fairness properties are needed, one faexesiand one for
messages. The basic idea is that a redex occurring in a reaecintext hole
is considered enabled, and if the computation path is adbstésan enabled
redex occurrence must eventually be reduced. Furthermangy enessage
that appeatrs in the internal message set (generated byeanahsend or an
input) must be received.

Definition 4.6 (Fairness properties):
Redex-fairness:a path,r, is redex-fairif for all configurations of the form
(D; - lmf{i- arising inm, if D; = R[D,qx| for someR, D4, then there is

hosc. tex; 14/10/2002; 10:47; p.29

30 S. E. Smith, C. L. Talcott

a later transition in which the redex reduced in this tramsiis the same
subterm occurrenc®,qy.

Message-fairness:a path,r, is message-faiif for all configurations of
the form(D; - ;) fé arising inw, each packetnp € p; must be delivered in
some later transition, either by being output (if the taligegxternal) or by
application of thereceive (if the target is internal).

Lemma 4.7 (SD admissibility): The admissible paths ¢tD Th are the com-
putation paths which are botledex-fair and message-fairWe let A(K)
denote the admissible paths with initial configuratign

Definition 4.8 (Interaction Path): An interaction path consists of an in-
terface and a sequence (finite or infinite) of interactiomse (in(MP) U
out(MP)) satisfying the interaction path laws. There are two mairslavihe
first says that inputs must be initial receptionists or actbat have become
receptionists by having their name exported in previoupust The second
says that outputs must be to actors that are initially in iteraal set or whose
names have been imported in previous inputs. For technicalenience we
allow gaps in the sequence (i.e. the sequence is a partietidarfrom Nat
to interactions allowing for times that no interaction oguand sometimes
represent the partial function as a set of pairso) for i in the function
domain.

The interaction path semantics of a configuration is the Siiteraction
paths obtained by hiding the internal details of admissiblaputation paths.
Formally we define a functiomp2ip mapping computation paths to inter-
action pathscp2ip(m) has the same interface as the interface of the initial
configuration ofr, its interaction sequence is given by the set of pairs of the
form (i, i0) such that theth transition has an interaction labéd,

Definition 4.9 (cp2ip(w)): For a computationr with initial configuration
Ip %), the associated interaction path is defined by

cp2ip(m) = ey where
e ={(i,io) | i € Nat A n(i) = K; “% K41 A io € (in(MP)Uout(MP))}

The interaction semantics of a configuratifdd] is the set of interaction
paths associated with admissible computation paths.of

Definition 4.10 ([K]):

[K] = {ip | 3r € A(K))ip = cp2ip(T)}

Interaction sequences should be thought of as convenipreasentations
of totally ordered multisets of I/O interactions. Two reggatations of the
same totally ordered multiset can be considered equivaBatause of the
presence ofdle transitions, the set of interaction sequences for a corafigur

hosc. tex; 14/10/2002; 10:47; p.30

Specification Diagrams for Actor Systems 31

tion is closed under this equivalence and representatitailslean be ignored
for most purposes.

Definition 4.11 ([(D)%]): To define the interaction path semantics of a top-
level diagram,[{D)%], all we need to do is define the corresponding initial
configuration:

(D)) = [HDE-0) 1]

Notice that by our implicit scoping and declaration coni@mt(see sec-
tion 2), all variables appearing in a top-level diagram asara during ex-
ecution. Extending the scope of the above correspondeneeadapt the
convention that whenever a top-level diagrafi)y, occurs in a context
where a configuration is expected it denotes the correspgradinfiguration,
{Dl-0)".

Now we can give the definition of the test for failed assegion
Definition 4.12: A diagram is assertion-valid)K((D)%), iff there is nor €
A((D)%) that contains aassert(false)-labelled transition.

4.3. COMMENTARY ON THE SPECIFICATION DIAGRAM SEMANTICS

The use of local reaction rules to define a labelled tramsiigstem is fairly
common. TheSD rules correspond to a language with syntax having some
features of process algebras such as CSP orrtbalculus, but with asyn-
chronous message passing and name handling modeled onaharoach.
Also, the syntax is hot intended to define an algebra of peesedut to be a
notation for specifying interaction patterns. In the fallng we discuss some
of the more subtle and perhaps nonstandard aspects of & rul
Thereceive rule contains implicit pattern-matching. Diagram varesbl
in My are considered pattern variables, and are matched agaepiatket
mp. It is important to note that the receivey is not considered part of the
pattern, rather it is evaluated in the before receipt ermirent. Thus only
those actors considered to be internal to the system ardaldeeive mes-
sages and itis not possible to receive a message destinau &obitrary actor.
acq(u) C acq(mp) holds by the pattern match thus insuring that the actor
locality laws are obeyed by thesceive transition. Thepick rule assigns
to the variabler an arbitrary value based on the names of actors currently
known. fresh corresponds to actor creation, assigning an actor name to
x which is not currently knownassign updates the value assignedtp
the new value being the valug in the current environment, if this value
is defined. (By redex-fairness a computation path contgiain undefined
(stuck) assignment redex is not admissible.) All of thesesroperate on the
lexically closest binding of the effected variable. Notattby our variable
declaration convention, these variables will be bound erdduction con-

hosc.tex; 14/10/2002; 10:47; p.31

32 S. E. Smith, C. L. Talcott

text environment, although the binding may be some arliitrainosen initial
value.

The scope- in rule allocates a new local environment to store the values
of the newly declared variables and initially assigns thehitirily chosen
values.

The intuitive semantics afonstrain(¢) is that the computation contin-
ues if the constraint holds and otherwise the resulting edatipn path is not
allowed. The second clause @nstrain causes the computation path to be
inadmissible by requiring a receive by a freshly createdracame that can
never be sent a message. This is a technical trick to expradmissibility
locally in terms of message passing requirements, ratlar dud another
parameter to the notion of admissibility. An alternativensatics would be
to simply not reduce the redex if the constraint expressmasdot evaluate
to true. In this case it might later become true and reduce, or it brigimain
stuck, and be inadmissible by the redex fairness requirenidm® assert
rule, on the other hand, reduces if the predicate expressidefined. In this
case it has no effect other than the label issued, which iffedge means the
diagram viewed as a proposition is false (see Definitionlithe predicate
remains undefined then the redex is stuck and, as fard¢hetrain case, the
computation path is not admissible by redex fairness.

4.3.1. Admissibility
One unusual aspect of the semantics lies in the details chdh@ssibility
requirement. ThesD admissibility requirement rules out any computation
path which contains a redex that is stuck, does not reduce.

We use the fact that admissibility rules out paths with faigestraints in
the definition of thei f-then-else macro. The macro expansion of

if ¢ then D else D>
illustrates this: in the expansion
(constrain(¢); Dy) @ (constrain(—¢); Ds),

the choice could pick the wrong branch, for instance takimgleft branch
when—¢ held, but the constraint would fail, and the path would naigpess
and thus be ruled out.

The redex admissibility requirement is significantly stgenthan standard
fairness requirements, and makes the computation systesalizable. Even
without requiring admissibility the computation systemuisrealizable be-
cause the value of expressions need not be computable. ldgwestricting
to the case where expressions are computable, some diagtiimsay not

hosc. tex; 14/10/2002; 10:47; p.32

Specification Diagrams for Actor Systems 33

be realized by any actor computation. One example is:

pick(nomorezeros = false);

[(receive(a <0); constrain(—nomorezeros);
nomorezeros = true; send(c<1))

%)

(receive(a < x); constrain(—(x =0 A nomorezeros));
send(c < 0))]9~

This diagram replies 0 to all inputs, except thst 0 inputmayget a 1 reply.
No realizable system can foresee the future to know whenabeihput
of a particular form has arrived. The source of the uncontplitha here is
constrain, which for obvious reasons is called a “miraculous” commiand
the Dijkstra language.

With respect to messages, admissibility is designed bothléoout paths
with buffered messages jnnot received, and to rule out paths in which there
is areceive redex for which a matching message is never input. A simple
consequence of the latter is tHaDs can express requirements that certain
messages must be input. A simple consequence of the forrtatisiessage
packet restriction can be expressed implicitlySB's, simply by having no
receives for some packets.

Lemma 4.13: Let V be a subset oMsg and letD be a diagram in which
no occurrence ofeceive(ay < M) could possibly match a message of the
form a <v forv € V (for anya € A). Then

(DI =[D); T A<V]

Proof. We only need to show the€ direction because the other direction
holds by definition. For this leip € [(D){] and letr € A((D)%) such that
cp2ip(m) = ip. Supposer(i) has labelin(a< M) for somei and somer<M .
Then message fairness, the message must be received, aredtiher must
be an occurrenceeceive(ay < My) in D that matches: < M and hence
MgV. O

4.3.2. Relation to the Actor Model

Specification diagrams were designed as a notation for idesgrsets of
interaction paths. In particular, we want our specificatiotation to be able
to express both high-level coordination patterns, andragsans about the
environment, as well as properties of a components behgiien such as-
sumptions. Thus th&8D semantics differs from the semantics of traditional
actor programming languages in a number of ways. One difterdas to
do with synchronization. In aisD computation more that one actor can
participate in a given thread of activity and a single acem participate in

hosc. tex; 14/10/2002; 10:47; p.33

34 S. E. Smith, C. L. Talcott

multiple threads of activity. The former allow&D's to express some forms
of synchronization constraints. As shown in [20] such c@msts can often
be expressed by more complex patterns of message passie@biliy of
a single actor to participate in multiple threads is in fagiraperty of the
original actor model [25] in which actors wewmserializedand could work
on multiple tasks simultaneously.

A second difference is a consequence of the redex-adniigsitgiquire-
ment applied tareceive redexes. A basic tenet of the actor model and of
open systems in general is that a system component cannimblcthe en-
vironment in which it lives. In particular it cannogéquire that a particular
message be sent. Thus an actor waiting to receive a messélgeqtigntly
wait, possibly forever. Furthermore, an actor system cdanmeafase to take a
message addressed to a receptionist. In general there Idigatimn to reply,
and the sender is not forced to block waiting for a reply, @ltfh it may
choose to do so. These distinctions are about language gqmessiveness
and not about the underlying computation model.

4.3.3. Choice

The choice operato® is just a coin flip, analogous to the internal form of
choice from process algebra. However, in the context of taAerrar in which
admissibility is defined, this internal choice operator cawdel the external
forms of choice found in process algebra. For instance, in

receive(a<dwow); Dy @& receive(a <wee); Dy

even though the choice is a coin flip, if thew choice was taken and the
only input waswee, thereceive(a < wow) will starve and the computation
ruled unfair. Thus it is as if that choice never happened,thadkffect is the
same as if this were an external choice. The specificatigyraiia analog of
external choice is the constraints on the environment dtiest@admissibility
conditions that allow a specification diagram to determiressages that are
acceptable and messages that are prevented. Thus exteoitd s more of
an admissibility issue. As noted above, in the underlyirigramodel, external
choice is not meaningful, since an actor system itself caso@onstrain the
environment.

5. Proving Specifications Correspond

In this section we give two examples to illustrate reasomaimgut diagrams. In
the first example we establish interaction equivalence refethicker specifi-
cation diagrams. In the second example two function conrEpsezifications
are related.

hosc. tex; 14/10/2002; 10:47; p.34

Specification Diagrams for Actor Systems 35

5.1. TECHNIQUES FORREASONING ABOUT INTERACTION
EQUIVALENCE

We begin by introducing two general techniques useful faal@shing prop-
erties based on interaction semantics.

Recall that two top-level diagrams are interaction eqemtjust if they
have the same interaction semantics.

(Do) = (D1)e it [(Do)2] = [(D1)2]

Thus to establish interaction equivalence, we must shotwfdh&ach admis-
sible computation path, of (D)5 there is an admissible computation path
m of (D1)% with the same associated interaction path, and conversely.

The first proof technique is to simplify the description of et of interac-
tion paths for a given top-level diagram by restricting iatiten to computation
paths given by dig-step semanti¢ghus reducing the amount of interleav-
ing to be considered. The second technique is a method famgglecal
descriptions of the correspondence between computatibis.pa

5.1.1. Big-step Semantics

The big-step technique can be applied to arbitrary diagratasvever, to
simplify the discussion, we restrict attention to diagramith staticstructure,
that istail-recursivediagrams defined without the use of therk construct.
A diagram is tail-recursive if every recursion variable weence is such
that in any execution, it will be the last redex in the scopehef binding
recursion operator. Thus there is no duplication of diagtaxh caused by
recursion — for example two threads expanding to four byllgnacursive
calls. Also when the recursion variable redex is reachegtiseno remaining
context inside the calling scope. For example, the diagrauoras defining
the various loop forms are tail-recursive.

A computation is in big-step form relative to a selected stib$ diagram
states if it consists of input/output transitions intevieg with sequences of
internal transitions connecting the selected states tiatbe considered as
single steps.

The FC computation given in example 4.5 is in big-step form rekatio
the four families of diagram statddC, FC0, FC1, FC2. For example, the
transition sequence with the label

rec; choose(l);receive(a < compute(v)Qc); fresh;
send(af < compute(v)Qcf)

is a big-step connecting arC0 state to arF'C1 state.
We now make precise the notions of big-step and big-step rsirsaln-
tuitively a big-step is a single-threaded sequence of matetransitions that

hosc. tex; 14/10/2002; 10:47; p.35

36 S. E. Smith, C. L. Talcott

are independent of any steps that could be executed in g@ar@ius any
interleaving of the parallel execution steps can alwaysdmmpted so that the
steps of the big-step sequence are adjacent, without aigatige observed
interactions or the fairness properties. Execution oestaints without any
observable effect can always be included in a big step. Famele,choose,
rec, and reads or writes of state variables local to the threagdappear in
big steps. Furthermore, some effects may be performed ipstép. A single
variable read/write or message receive/send is fine if aéircgteps are purely
local, and a single receive followed by one or more sendssis @haffected
by any interleaving. A write followed by a read does not méet Ibig-step
criteria, because an interleaving with a different writelldocause the value
of the read to change. Formally, we consider three classedffeift: read
effect unbuffered write effecfobservable immediately), artuliffered write
effectobservable sometime in the future).

Definition 5.1 (Redex effects): The effects of an atomic redex are classified
in the context of step sequences with states of the B[D;]]. An occur-
rence of a variable i; is said to bdocal if it is bound in R;[D;]. The effects

of the atomic redexes are as follows (note a single stateowemd have both
read and write effects):

read effect receive(aq < My), z:= ...y..., constrain(...y...),
send(...y...) for y non-local

unbuffered write effect = := 1), pick(x), fresh(z), receive(ag<...x...)
for z non-local

buffered write effect send(aq < My)

A step iseffect-freeif it has no effect (read, unbuffered write or buffered
write).

In the following, we assume diagrams have been placed inna ¥adnere
eachrec X.D uses a unique recursion variab{e in addition to our assump-
tion of fork-freeness and tail-recursion.

Definition 5.2 (Big step): A big stepis a rule sequence the form

(k2 RIR(DA] 55 Rl[Bia[Dial] [0< i <)

such that
(1) for eachi, D; is a redex and®; is defined without use of theclauses;

(2) eachrec(X) label appears at most oncelin.. ., [,, meaning each
recursion operator is unrolled at most once per big step;

hosc. tex; 14/10/2002; 10:47; p.36

Specification Diagrams for Actor Systems 37

(3) there is no receive by a freshly created actor; that egetis no label
subsequence of the forfiresh(x) ... receive(x < My)

and furthermore

(4) if there is a step with an unbuffered write effect, ther@yrbe no read
effects present in other steps;

(5) there is at most one step with a read effect;

(6) buffered write effects must not occur before any readriuifered
write effects.

In the above definition, (1) ensures that the rule sequersiagke threaded,
(2) guaranteeing finiteness of big steps connecting diagtates, (3) is needed
because an actor can only receive a message after its nartedrasxported,
and this entails an ordering that prevents permuting stépaditions (4-6)
ensure permutablility with parallel computations.

Definition 5.3 (Big-step semantics):A big-step semanticir a top-level
diagram is given by selecting a subset of the reachable atragtates such
that

(1) any sequence of rule applications starting in one of ¢ected states
reaches another selected state in finitely many steps, and

(2) the resulting sequence is a big-step.

The resulting semantics is the set of admissible compustienerated by
using only input/output transistions and the big-step sages viewed as
atomic transitions.

Lemma 5.4 (Big-step semantics is sound)Given a top-level diagram and
a subset of the reachable diagram states that defines apigeshantics, for
every interaction path for the diagram there is a computadiothe big-step

semantics that is mapped to this pathdpyip.

Proof. This lemma is proved via Bermutation Lemmavhich establishes
that certain pairs of actions in different threads can benpézd. Big steps
are then formed by iteratively permuting actions thus ti@msing any ad-
missible computation to a big-step computation with the esassociated
interaction path. Similar proofs are given in [3, 31].]

Note that the full admissible computation semantics is alduig-step
semantics, obtained by selecting all possible diagrarestat

For diagrams with static structure, computations caneasilvisualized
by marking the active redex points (one for each active tread moving

hosc.tex; 14/10/2002; 10:47; p.37

38 S. E. Smith, C. L. Talcott

the marks around the diagram as the computation proceedsleétisn of
intermediate reachable states can be represented as & sutise possible
active redex markings. The states will be parameterizedldlyad diagram
parameters plus an environment mapping visible varialblesitrent values.
In the function composer computation above the intermeditgtes are given
by marks at the diagram entr{? (), the point just before the receive by the
initial receptionista (FCO0), the point just before the receive by the actor
bound tocf (FC1), and the point just before the receive by actor bound to
cg (FC2). One more mark is needed at the diagram exit to allow for the
possibility of termination after a finite number of iterati

To select a subset of states that give rise to big-step catipuns for a
given diagramD we mark stopping points (redex occurrences) on the dia-
gram that correspond to intermediate states of interekeicdémputation, for
example points for which we want to express invariants ogopinoperties of
the computation. This marking is further refined to a markfhguch that the
corresponding selected states define a big-step semantics.

5.1.2. Interaction Simulation

Given two specification diagram configuratio®$ and K7, they may be
shown interaction equivalent for inpufsmp by finding an interaction pre-
serving correspondence between their admissible conpngad (K; | Amp).
By Lemma 5.4 we may assume thig§ and K, are configurations arising in
some big-step semantics and restrict attention to the athtédig-step com-
putations. Arinteraction simulationis a relation on (big-step) configurations
and enabled (big-step) transitions that provides a localmmef defining such
a correspondence. The idea is to define a relation on (bg)-stnsitions, lift
this relation to admissible configurations, preservingitfigutput transitions,
and then show that admissibility is preserved.

Definition 5.5 (Interaction simulation): Let K; be the reachable configu-
rations in some big-step semantics fok. 2. A pre-interaction simulation
for inputs inAmp consists of a binary relation~- onKj, x K; together
with functions®; for ;7 < 2 mapping enabled internal and idle transitions of
K to (possibly empty) sequences of big-steps starting ffom; such that
for each related paik, ~¢ K; the following conditions hold:

(1) Ky and K7 have the same interface and the same multiset of undeliv-
ered packets to external actors.

2 Jtwould be desirable to define the local relation so thatgméag admissibility is guaran-
teed, but to achieve this means both complicating the diefinitf local simulation and greatly
resticting the espressiveness of the simulation relafibns we have chosen to separate out
the prove of preservation of admissibility.

hosc. tex; 14/10/2002; 10:47; p.38

Specification Diagrams for Actor Systems 39

(2) if Ky A, K, with inputs inAmp, then there ig(] such thatk, ~¢

K] andk; 22" K, and dually with 0-1 interchanged (extenditrg

as the identity on i/o labels).

A pre-interaction simulatioq ~¢ , g, ®;) induces functions (also called
® ;) from computations foK; to computations foik;_; (in the chosen big-
step semantics) fdy ~¢ K;. This simulation is aiteraction simulation
if these functions preserve admissibility.

Lemma 5.6 (Isim): Let K; be the reachable configurations in some big-step
semantics forj < 2 and let(~¢ , ®o, ®;) be an interaction simulation on
big-step computations K, K;) with inputs restricted tAAmp. If K; €

K; for j < 2, then

Ky ~c K = (Ky) | Amp ~ (K;) | Amp

Proof. We need only show the interactions are preserved. Thisidelioom
the fact that the transition functions extend as the iderdit interaction
transitions. O

5.2. TICKER EXAMPLE

In this section we prove the Ticker equivalence theorem 3.5:
(ChoiceTicker(a))y [MPyine L
(ParTicker(a))? | MPyige ~
(Ticker(a))gy
where the parameteris the name of the ticker and
MPqiine = A<time @ A.

We do this by first defining a big-step semantics for each ofdahdevel dia-
grams. Proving equivalence @thoiceTicker andParTicker is then a matter
of establishing an interaction simulation between contprigpaths of the
corresponding big-step semantics. Equivalenc&ioker and ChoiceTicker
requires establishing a more complex correspondencel tracaformations
are not adequate for relatinbicker and ChoiceTicker because th&icker
relies on the ability to discard paths when a wrong choicel®esn made,
for example if a choice is made to accept time messages before the next
counter increment and only one maréme message arrives.

The diagramTicker(a) is given in Section 3.1.2 (Figure 3) and the di-
agrams forChoiceTicker(a) and ParTicker(a) are given in Section 3.2.8

hosc. tex; 14/10/2002; 10:47; p.39

40 S. E. Smith, C. L. Talcott

(Figure 7). For the readers convenience, we recall the amagjr in textual
form. Ticker(a) describes an actor that increments its counter after regplyi
to some finite number afime requests.
Ticker(a) =
{pick(count € Nat);
[[receive(a<time @ z); send(z <reply(count))

count := count + 1] %>}

10

The other two describe actors that increment the countemn tgxeipt of (in-
ternally generated}ick messagesChoiceTicker(a) non-deterministically
chooses between acceptiime andtick messages.

ChoiceTicker(a) =

{ count : count :=0; send(a <tick);
[receive(a <tick); count := count + 1; send(a < tick)
@
receive(a <time @ x); send(a < reply(count))] %+>°;
receive(a <dtick) }
while ParTicker(a) acceptstime andtick messages in parallel.

ParTicker(a) =

{ count : count := 0; send(a <tick);

[receive(a <tick); count := count + 1; send(a <tick)] >

[receive(a<time @ x); send(a < reply(count))] %> }

5.2.1. The Choice Ticker Big-step Semantics

We define a big-step semantics for theoiceTicker(a) diagram by defining

a marking,ChoiceTickerM(a), of the diagram, and showing that this mark-
ing determines a big-step semantiCéwoiceTickerM (a) has three marks: the
diagram entry point, the entry to the loop, and the exit polDorresponding
to the three marks there are three families of states paesized by the
internal actor and the value of the diagram variable, wheleyant:

— ¢T(a) — the diagram entry point with internal acter
(cT(a) = ChoiceTicker(a)),

— cT1(a,n) — the loop entry point withcount = n,

— End(a) — the exit point.

hosc. tex; 14/10/2002; 10:47; p.40

Specification Diagrams for Actor Systems 41
The set of rule sequences connecting these diagram states ar

(Lp) cT(a) —— cTl(a,0)

a<tick

(L) cTl(a,n) 225 ¢Tl(a,n + 1)

a<tick

a<time@Qc

(Lg) cTl(a,n) cTl(a,n)
c<reply(n)
(L3) cTl(a,n) adeick, End(a)

Ly = assign;send
Ly = rec(X); choose(l); choose(l); receive; assign; send
Ly = rec(X); choose(l); choose(r); receive; send

L3 = rec(X); choose(r); receive

Clearly each of these is big-step and thus we have a big-steprttics.

5.2.2. A Big-step Semantics for the Parallel Ticker

Defining a big-step semantics for the parallel ticker rezgia little more care,
since this diagram has two threads of activity that shane.staet diagram
ParTickerM(a) beParTicker(a) with the following marks: the diagram en-
try point, the entry point to the loop on each parallel threthe exit point
of the time thread, the point between the receive and send oncile
thread, and the point between the send and the assign o ttkethread.
This marking leads to seven families of states the initiatestand six joint
states of the two threads.

— pT(a) = ParTicker(a) — the diagram entry point with internal actor
a.

pT; ;j(a,n,c) = {count = n : [PTli(a) | {z = c: PTrj(a)}]} —two
threaded states with internal actarcountn and customet.

where the sub-diagrani¥I'l;(«) andPTr;(a) fori € {0,1} andj € {0,1, ¢}
are intermediate diagrams for the two parallel branchesndby

PTly(a) = rec(X)(receive(adtick); count := count+1; send(a<tick); X)
PT1 (a) = count := count + 1; send(a < tick); PTly(a)

PTro(a) = rec(Y)(skip®[receive(a<time@z); send(z<reply(count)); Y])
PTri(a) = send(x <reply(count)); PTro(a)

hosc. tex; 14/10/2002; 10:47; p.41

42 S. E. Smith, C. L. Talcott

PTr.(a) = skip
The possible rule sequences connecting these states aten@mention of
rules with no effect):
(Lo) pT(a) —— pTyp(a,0,nil)

a<tick
tick
(LIO) pTO,j(a’vn>C) ‘m—lc> pTl,j(a,n,c)

(Ln) PTy (a;n,c) ——— pToj(a,n+1,c)

adtick
(LTO) pTi,O(a7n7C/) M} pTi,l(a7n7C)

(LTl) pTi,l(a7n7C) - me(a,n,c)
cdreply(n)

(LTS) pTw(a,n,c) - pTi,e(a’vn>C)

It is easy to check (by filling in the hidden rule applicatiptizat these states
and rule sequences determine a big-step semantics. Thefaresthrking
intermediate points on the two threads is due the the fa¢tdhe thread
readscount and the other writes it. Specifically, according to the higps
definition, L.y and L,; cannot be condensed into one big-step because there
can be at most one read effect in a canonical step, and theeercsl the read

of the valuen are read effects in the two respective rules.

5.2.3. Choice Ticker—Parallel Ticker Equivalence

To prove the equivalence of the choice and parallel tickagidims, we define
an interaction simulation for the big-step semantics tetdtes the choice
and parallel ticker top-level diagrams restricted to tiraguest inputs. The
relation ~¢ on configurations is given by

(init) (cT(a)-p)y~c (pPT(a) p)y
(0,0) CTl(a7 n) - p > ; ~c pTO,O(a7 n)-)
(1,0)

a
X
a
X
a

(

(

()-a<tick-p) ¢ ~c (pTigla,n) p)
(01) (cTl(a,n)- aatime@c-pu) % ~c (pToy(anc) p)*

()

(

(

a

(111) X

~a<tick-a<dtime@c-pu) ¥ ~c (pTy(a,n,c)-p)

(Le) (End(a)-p)y ~c (pTi(a,n)-p)?

X

(0,e) (End(a)-p)5 ~c(pToe(a,n) a<tick-pu)

a

X

The transition functionb.,, in the choice to parallel ticker direction maps
single cT steps to macro steps of pT as follows:

q)c2p(L0) = LO

hosc.tex; 14/10/2002; 10:47; p.42

Specification Diagrams for Actor Systems 43

Peop(L1) = Lio; L
Peop(L2) = Lro; Ly

c2p(L3)

q)c2p(1dle) = Lio; Lnn

The loop entry transitions correspond in an obvious way. rfEoeive tran-
sition maps apply to the correspondence case (0,0)iahd transition map
applies to the correspondence case (0,e). These are theasdy that arise
in the cT to pT direction. The non-trivial idle transition & needed be-
cause the parallel ticker keeps on ticking forever whiledheice ticker stops
ticking if requests stop arriving.

The transition functior® o in the parallel to choice ticker direction maps
the receive pT steps to idle steps of cT and the sends to e#¢send cT steps
as follows:

(0) ®pac(Lo) = Lo for the correspondence case (init)
(10) ®,2c(Lyp) = idle for the correspondence cases (0,0), (0,1) and (0,e).
(11) ®p2c(Lyn) = Ly for the correspondence cases (1,0) and (1,1)

) = idle for the correspondence cases (0,0) and (1,0).
(r1) ®pac(Ly1) = Lo for the correspondence cases (0,1) and (1,1).

) = Ls for the correspondence cases (0,0) and (1,0).
(113) ®poc(Ly) = idle for the correspondence case (1,e)

To see that this satisfies the conditions for beindgs@rinteraction simu-
lation we need to show that admissible paths are mapped t@sithie paths
by the transition functions. Supposeis an admissible computation for the
choice ticker andr’ = @, (7). If 7’ is not admissible then either there
is a message that is not delivered or an exposed redex that ieduced.

In the message case, external messages and their outprgspomd so it
must be atick or time message that is not delivered. By definition of the
transition map and configuration correspondence there atsstbe such a
message undelivered i contradicting admissibility ofr. Similarly if there

is a redex exposed and not reduced it must be one of the pana#ad entry
points. Again by the correspondence this means that thedaty point for
the choice ticker remains unreduced from some point whictoigossible.
Going the other direction, supposé is an admissible path for the parallel
ticker, 7 = ®po.(7’), and path’ is not admissible. Supposeiak or time
message is undelivered i then either there is a corresponding undelivered
message in’, the parallel ticker is in a state that has received that agess

hosc. tex; 14/10/2002; 10:47; p.43

44 S. F. Smith, C. L. Talcott

and is ready to do a send, whose corresponding transitisrwiauld receive
the message. Thus it can not remain undelivered. Simildriyye choice
ticker is not in its end state the corresponding parallédetianust eventually
to a transition that causes the choice redex to reduce. Thusrhma 5.6 we
have proved

ChoiceTicker(a) § | MPyige ~ ParTicker(a) | MPyige

5.2.4. Choice Ticker—Ticker Equivalence

Next we consider thél'icker(a). We first define a markingTickerM(a),
for this diagram and verify that it determines a big-step aatins. Then we
show that there is an interaction preserving corresporelbatween the big-
step semantics dFicker(a) and that ofChoiceTicker(a) (restricting inputs
to MP.ine). TO describe the marking, we first expand the loop abbrieviat
in the Ticker(a) diagram obtaining

Ticker(a) =
{pick(count € Nat);
rec(X)((pick(icnt € Nat);

rec(Y)([constrain(icnt =0); skip]
S
[constrain(icnt > 0); receive(a < time Q z);

send(z <reply(count)); icnt :==icnt —1; Y]);

count := count + 1; X)

S

skip) }

TickerM has marks at the diagram entry point, at entryrée (X), at the
entry torec(Y'), and at the diagram exit point. Sin@&cker has a single
thread of activity, each mark corresponds to a family ofestgtarameterized
by the internal actor and the current count. Thus we have

— T(a) — theinitial state;

— TX(a,n) — the state corresponding to entry pointz#tec (X), with
count = n,

— TY(a,n,m), the state corresponding to the entry point in thedoe(Y)
with count = n andicnt = m; and

— End(a) — the state corresponding to the exit point.

hosc. tex; 14/10/2002; 10:47; p.44

Specification Diagrams for Actor Systems 45

The possible sequences of rules connecting these stafgedssing labels
for rules with no effect) are the following

Ly) T(a) — TX(a,n)
X(a,n) — End(a)

=

(

(Lze) (a,n

(Lgy) TX(a,n) — TY(a,n,m)
(Lyz) TY(a,n,0) — TX(a,n+1)
(Lyy) (

TY(a,n,m + 1) _adtine@e TY(a,n,m)
cdreply(n)

Again it is easy to see that the above states and rule sequdetarmine a
big-step semantics. Now we establish the claimed correkpure between
the big-step semantics @ficker(a), call it B, and that ofChoiceTicker(a),
BCT!‘

Lemma 5.7 (cT-T): There are functions mappitgt | MP4iy,e) to B and
conversely that preserve the associated interaction path.

Proof. The T to cT direction is easy. Define a map from T-configuration
to cT-configurations as follows.

(T(a)-p)5— (cT(a) p)s wherey contains onlytime packets

(End(a)-p) 5+ (End(a) - p) wherep contains onlyreply packets
(TX(a,n) - p) 5+ (cT(a,n)-p-a<tick)y
wherey, contains onlytime or reply packets

(TY(a,n,m)-p)§ — (cT(a,n) p-a<tick)

wherey contains onlytime or reply packets

Assumer € Br. Constructr’ so that at each stagethe source and target
states are the image of thoserinlf the label ofr(4) is an input/output or idle
transition then the label of' (i) is the same. If the label of(i) consumes a
time packet then the label of (7) is the internal transition of cT consuming
the same packet. If the label of7) is the initial transition choosing am, the
7/(i) doesn ticks (treated as a macro step so the bookkeeping is easier). If
the label ofr(7) is the transition to th&nd(a) state then the label of (7)

is the transition the consumes a tick and moves to the camnelipg state.
If the label of () is the move fromT'Y to TX then the label ofr’'(i) is
consumes and sends &ck. Finally, if the label ofr () is the move fronil'’X

to TY choosing ann, the label ofr’(i) is idle. Itis easy to check that’' so
constructed is a path &.r.

hosc. tex; 14/10/2002; 10:47; p.45

46 S. E. Smith, C. L. Talcott

The cT to T direction is little tricker, since the mapping8fr configu-
rations toBr configurations depends on the stage in the pathzaFers.r,
constructz’ by mapping each transition(i) to a segment of one or two
transitions which we refer to as|(i) to simplify bookkeeping. By induction
and intial conditions we assume we know the source’ 0f).

— if 7(4) is an input, output or idle transition theri(i) is the transition
with the same label starting with the known source.

a

— if 7(:) is the initial internal transition with with sourcecT(a) -)y
(wherep has onlyt ime packets) and targétcTl(a,0) - - a<tick) ;
then’(i) is a segment of two steps with sourc& (a) - 12) | and target
(TY(a,0,m)-) wherem is the number oftime transitions inw
afteri and before the nextick.

— if w(2) is atime transition with source cT1(a,n)

“u) 5 thens' (i) is a
atime transition with sourcé TY (a,n,m + 1) -)

a

X

— if 7(i) is atick receive/send transition with sour¢eTl(a,n) - p) |
thenr'(4) is a segment of two transitions in which the state moves from
TY (a,n,0)to TY(a,n + 1,m) where againn is the number ot ime
transitions before the nextick

— if m(i) is atick receive only transition to the end state, thgf) is a
segment of two transitions in which the state moves ¥ a, n, 0) to
TX(a,n + 1) and then to the end state.

Again it is fairly easy to see that (i) so constructed is a path Bf. O

5.3. FUNCTION COMPOSER EXAMPLE

We now establish Theorem 3.4 of Section 3.2, which statdsthieapurely
local computation ofio f is equivalent to its distributed implementation. This
illustrates how to simplify a complex composite diagramnglkadvantage of
the additional known context and emerging internal invagaRecall that for
actor names, af , ag and functionsf,g : V. — V onV C U, the diagrams
F(a, f),FC(a, af, ag), andC(a, f, g, af , ag) are defined by

F(a, f) = [receive(a < compute(z) @ zc); send(zc areply(f(x)))] %>

FC(a, af , ag) =
[receive(a < compute(x) @ zc); fresh(zf); send(af < compute(x) @ zf);
receive(zf <reply(y)); fresh(zg); send(ag < compute(y) Q zg);
2))

] 0...00

receive(zg <reply(z)); send(zc <reply(z))

hosc. tex; 14/10/2002; 10:47; p.46

Specification Diagrams for Actor Systems 47

C(a, f,g,af ,ag) = (FC(a, of , ag) | F(af, f) | F(ag, g))
What we must prove is:

C(aafagaaf>ag)g é F(a’vgof)g

That is, we must show that

[C(a, f,9,af , ag)] = [F(a,g 0 f)y]

As for the ticker examples, the first step is to define a siétélg-step se-
mantics.

5.3.1. Big-steps for the Function Computer

The marked function computer diagrai\l(a, f), has two marks—one at
the entry to the loop, which is also the entry point of the thag, and one at
the diagram exit point. Corresponding to this marking weehiavo families
of statesF(f)(a) = F(a, f) corresponding to the entry point; aidnd(a)
corresponding to the exit point. The rule sequences comgethiese states
correspond to the following big-steps.

(Lend) F(a>f) - FEnd(a’)

a<compute (v)Qc
Lr) Flaf) ————=—
(Lr) (a, f) careply(f(v))

F(a, f)

5.3.2. Big steps for the Function Composer

For the big-step simplification of the function composer werf the marked
diagramCM(a, f, g, af , ag) by putting marks on th&C(a, af , ag) part at
the loop entry point, before the second and thiedeives, and at the loop
exit point, and marking the entry and exit points of theif, /) andF(ag, g)
parts. We represent the states corresponding to these msw&gamily of
states indexed by triplesj, k indicating the diagram mark for each part, and
parameterized by an environment,binding relevant state variables:

Ci,j,k(aa le, ag, ’Y)

The index: gives theFC component statd] is the loop entry]l, 2, indicate
the second and thirdeceives, ande is the exit point. Similarlyj, & give

the f and g function computer state$), being the loop entry and being

the loop exit.y binds the state variables, y, zc, zf, x¢}, although not all
of the bindings are meaningful at any given marking tripleheTpossible
rule sequences connecting states are the union of thosadbraé the three
parallel threads. The rules for tlh& part are

a<compute (v)Qc

L C] 9 ? ?
(ch) 0,]7k(a af ; ag,) af <compute (v)@cf

hosc. tex; 14/10/2002; 10:47; p.A47

48 S. E. Smith, C. L. Talcott

Cujx(a, af ,ag, v{z = v,z v ¢,af > cf}
where cf is fresh

cf <areply(w)

(Lfcl) Cl,j,k(a7 afa ag, ’Y)

ag<icompute (w)Qcg
Cojk(a, af , ag,v{y — w,z9 — cg}
where ¢g is fresh andy(zf) = ¢f

<reply(u)
(LfCZ) CZ,j,k(a> a’fv ag, ’7) b e
c<dreply(u)

Co,jk(a, af, ag,v{y — w,zg — cg}
if v(zg) =cg and ~(xc) =c¢
(Lfce) CO,j,k(a> af, ag, Av 7) B Ce,j,k(av afv ag, A/y)
The rules for thef computer part are
af <compute(v)Qcf
cfareply(f(v))

(Lfe) Ci,O,k(av (lf, 0’977) - Ci,e,k(a’v (lf, ag, ’7)

(LfO) Ci,O,k(aa le, ag, ’Y) Ci,O,k(aa le, ag, ’Y)

The rules for thegy computer part are similar. Again, it is easy to see the this
determines a big-step semantics since each sequence hastad neceive
followed by a send in addition to some effect free rules.

5.3.3. Function Computer—Function Composer Equivalence
To complete the proof of Theorem 3.4, we form an interactiomuation
relating initial states

<F(avgof)>(; ~C <CO,0,0(0’7 af,ag,7)>g
We observe the following property of function composer agunfations.
— Ifthe Cindex is0, then there are no pending messagesftor ag.

— Ifthe Cindex is1, then, either there is a single penditgmpute mes-
sage toaf or a single pendingeply message to(zf).

— Ifthe Cindex is2, then, either there is a single pendidgmpute mes-
sage toag or a single pendingeply message to(zg).

— If the C index ise, then there are no pending messages,taf or ag,
and no further inputs.

hosc. tex; 14/10/2002; 10:47; p.48

Specification Diagrams for Actor Systems 49

The interaction simulation is as follows (we elide paramstéF /C/FEnd
and the interfaces to avoid clutter):

(Fop) ~c (Cooo- 1)
(F-p-a<compute(v)) ~c (Ciop-p- af <compute(v))
(F-p-a<compute(v)) ~c (Ciop0-p-cf areply(f(v)))
(F-p-a<compute(v)) ~c¢ (Cao0-p- ag<compute(f(v)))
(F-u-aacompute(v)) ~c {Copo- - cg areply(a(f(v))))

(FEnd i~ a<compute(v)) ~c (Cieo-u-of areply(f(v))
(FEnd - p- a<compute(v)) ~c (Caeo- - ag<compute(f(v)))
(FEnd - pt- a<compute(v)) ~c (Cayj-p-cg<reply(g(f(v))))

for (i,7) =(0,€e), (e,0), Ore, e

(FEnd-p) ~c (Cijr-p)
for (i,7,k) =(0,0,¢e)/(0,e,0)/(e,0,0)/(0,e,e)/(e,e,0)/(e,0,€)/(e,e,e)

The transition maps are defined in a similar manner to thecefmarallel
ticker. For example, in the mappinBoox from C to F, Ly, Lyct1, Lo, Lgo
transitions all map to idle transitions, ardg., maps toLr. By an argu-
ment similar to the choice/parallel ticker, admissibiligypreserved. Thus by
Lemma 5.6, the proof is complete.

6. Related Work

A wide variety of notations for concurrent/distributed &ya specification
have been proposed. Specification diagrams share featilhgsrevious work
but are still quite separate from existing schools. Diffe¢ferms of specifica-
tion have different strengths and weaknesses, and for sygfems the com-
bination of multiple techniques will probably be needed. bviefly review
some of the related approaches here.

The general idea of taking a diagrammatic approach to spatdn has
been advocated by multiple research projects. A book coyeseveral ap-
proaches is [4]. One reason why the time is ripe for graptaparoaches is
the emergence of graphical editors, which allow specibeetito be entered
without resort to text-based input (seg[9]).

Specification diagrams are most closely related to othengaf message-
passing diagrams, diagrams with vertical lines for proeg/éisreads, and hor-
izontal lines for messages. Message passing diagrams Hamg history in
software specification and are now most widely known as eithdL Se-
guence Diagrams [36], or Message Sequence Charts (MSCksHawever,

hosc. tex; 14/10/2002; 10:47; p.49

50 S. E. Smith, C. L. Talcott

these sequence diagrams are primarily designed to showblgossenarios
of execution, and not to give all possible scenarios. Mopzme versions
of UML sequence diagrams [13] have considerable extra zyadaed so
more features can be expressed. Several extensions téekigliMSC’s have

also been proposed to make them more expressivee.gef22] and ref-

erences therein. These systems are still considerablyelga®ssive than
specification diagrams, which allow arbitrary logical eegsions to be em-
bedded, recursion, shared state, and asynchronous fasagieg all in one
formalism An elementary semantics for sequence diagrampesaap in [11].

Wirsing and Knapp [44] have developed tools for generatiognfl exe-

cutable specifications from Jacobson’s interaction diagréan ancestor of
sequence diagrams) extended with formal annotations.dratior model,
event diagrams [21, 24, 12] graphically model scenariogtmraomputation

by message-passing edges between actors.

SDL (Specification and Description Language) is an ITU saadided
language that is mainly used for telecommunication apjidina. Like spec-
ification diagrams, SDL defines both a graphical and a texgmksentation
form, with message passing an important aspect of the sgsin. Follow-
ing the evolution of SDL a number of formal semantics havenlyeloped
(see [17, 18]). SDL supports specification of timing proesitbut with re-
spect to control and logical properties it is less expres#man specification
diagrams. There are a number of tools for simulation of SDec#jations
and for code generation, something currently missing fecsgation dia-
grams.

Specification diagrams also share commonalities with atpproaches to
precise specification, in particular with process algebuah as CSP [26, 35],
CCS [32], and ther-calculus [33]. A number of full specification languages
based on process algebra have been developed; exampledeindDTOS
[10], which is based on CSP; it is now an an ISO standard. Bsoalgebras
including CSP do not generally address the issue of fairn@sg conse-
guence of this ixec X.X is equivalent tceod in specification diagrams but
not in CSP since the former can starve other processes.

CSP processes have several different semantics (cf. [@@)traces model
7T (P) of a processP is as the name suggests the set of sequences of action
labels of possible computations Bf The traces model is simple and useful
for a number of analyses. However, the traces model doesisiimglish
between the CSP internal and external choice operatorghvgmoduce dif-
ferent processes. This is because traces do not express wiatess cannot
do. The failures modef(P), which augments each trace with the sets of
actions that a process can refuse to do, makes the desitatttiti;. The
internal-external choice distinction is not a natural idigion in the actor
model (seg 4.3.3).

hosc. tex; 14/10/2002; 10:47; p.50

Specification Diagrams for Actor Systems 51

There is one more problem that must be solved before a sipabtess
semantics for CSP is achieved. Namely, a divergent subgsqome with an
infinite sequence of silent transitions) can make a whole @8&ess diverge,
preventing other subprocesses from communicating. Thedaidivergences
model N/ (P) extends traces leading to a state that could diverge with all
possible behaviors from that point, expressing the viewiffdivergence is
possible, then there is nothing useful to say about the psoitem that point
on. In the actor model, divergence is not a semantic probkemivergent
actor or group of actors might slow things down, but becadigheofairness
assumption they will not affect the interaction semantitshe component
that they belong to.

Hoare [26, 35] defines a satisfaction relation for CSP prseeas follows:
Let R be a predicate on traces; the?,|= R just if for every tracetr of P
(tr € T(P)), R(tr) holds. This has a strong analogy to how3iD satisfies
a mathematical specification. L&f be a predicate on interaction paths with
interface(p, x), then aSD with interface(p, x) satisfiesM just if M holds
for each of its interaction paths.

In [35] CSP refinement is characterized algebraically byrdggirement
that P is refined byQ (written P C Q) justif PM1Q = P, whereis the CSP
non-deterministic (internal) choice operator. This gidédgerent notions of
refinement depending on the chosen notion of equality, Hhain the choice
of process semantics [35]. CSP’s notion of refinement isogjoals to our
interaction refinement relation: supposifgand@ wereSDs, our analogous

relation is@Q é P (note the subset direction is opposite in the two for-
malisms: refinement produces fewer paths). However, ictierarefinement
has no similar algebraic characterization.

CSP Refinement is transitive and compositional in the sereteftP is
refined by@ and E[X] is a process term with a place hold€rfor processes,
then E[P] is refined byE[Q]. An actor component algebra [41] has parallel
composition, hiding, and renaming as primitive operatiarsl using these
operations we can define component contexts analogous t@@EEss con-
texts such agw above. The compositionality properties of CSP refinement
above hold for interaction refinement in any actor compoaégebra, and in
particular hold forSDs sinceSDs form a component algebra. So there is also
a CSPSDanalogy here.

An important property of failures refinement is that it redsianternal
choices but preserves external choice. The specificatiagralin analog of
external choice (se§4.3.3) comes from the ability to express constraints on
the environment and interaction refinement for specificatd@mgrams may
produce further constraints on the environment. Howeweh sliagrams do
not represent actor system behaviors, since as discussed. 312 an actor
system can not refuse messages coming from the environifieatnterac-

hosc. tex; 14/10/2002; 10:47; p.51

52 S. E. Smith, C. L. Talcott

tion refinement relation on actor system components wilehie property
that the environment is not further constrained as far asages to visible
actors are concerned, while the variety of replies may bacedl Thus on
actor system behaviors, interaction refinement enjoys alogaus property.

Temporal logic formulae have been extensively used as asfealogical
specification of concurrent and distributed systems [3Q,R8cently tempo-
ral logics for distributed object based systems have beeslajged [16, 14].
While such logics express an extremely broad collection roperties, a
significant disadvantage is the need for large, complex ditamto specify
nontrivial systems: readability of specifications becomegrious issue even
for small specifications, and users thus require more ag«¢htraining. Log-
ics are additionally very useful for expressing propertiase the system is
specified. Specification diagrams themselves can servautbese of a logic
by directly expressing safety and liveness properties, &s ilustrated by
the examples of Section 3. The use of embedded non-congmahtsser-
tions is very similar to forms found in Dijkstra-style weakegrecondition
logics for non-concurrent programs. The manner in whichmatations may
be “cancelled” in the middle of computing visonstrain is similar to the
behavior of theassume(“miraculous” or “partial”’) command introduced by
Nelson and others [34]. Predicates that impose requirenesert(¢) in
specification diagrams, correspond to the Dijkstra cakatsertcommand.

Finite automata are useful for formally specifying systemisch have a
strong state-based behavior. They lack expressivity, atttyomake up for
this lack by their amenability to automatic verification ligite-space search
techniques. The Statecharts automata formalism [23] hamhe particularly
popular in industry. The primary weakness of finite automsatifat a com-
plex software system may not have a meaningful global sk properties
of such systems are often more naturally expressed in tefragents and
relations on events.

CONCLUDING REMARKS

Formal specification of protocols is an important reseaogictdue to the
critical nature of network protocols as well as the signiitazhance of design
errors arising in these protocols. Formal languages tyaearotocols which
can be placed in the hands of practitioners will help in@aasderstanding
and reliability of designs. Our language has a strong forpaals, so spec-
ifications will not be ambiguous. It is also designed to beblesathe main
reason for the graphical notation. Mathematicians mayepitée textual ver-
sion, but practicing engineers will have a strong prefegeioc the graphical
presentation.
For small specifications as presented here, complete fqoafs of prop-

erties can be given. For larger specifications, protocois e completely

hosc.tex; 14/10/2002; 10:47; p.52

Specification Diagrams for Actor Systems 53

specified, and more limited aspects of the protocols proeerect by formal
reasoning. So, there is a spectrum of ways in which the lagguaay be
used, for both small and large specifications, and formal serdi-formal
reasoning.

We have developed several larger examples to more fulljthestheory;
these will be published elsewhere. Perhaps the most impduture work
is development of decision procedures for checking rdsttiproperties of
specifications. It would also be interesting to considerettgying a real-time
version ofSD.

Acknowledgements

Partial funding for the first author was provided by NSF gsdDCR-9619843
and CCR-9988491. Partial funding for the second author wasiged by
ONR grant NO0014-94-1-0857, NSF grant CRR-9633419, ONRO426D9-
C-0198, NSF CCR-9900326, DARPA/Rome Labs grant AF F30682-9
0300, DARPA/SRI subcontract 17-000042, DARPA/NASA cocitidAS2-
98073.

Thanks to Gul Agha, Carlos H.C. Duarte, lan Mason, Prasahai,Tand
the anonymous referees for many helpful comments on vasietsons of
this paper.

References

1. M. Abadi and L. Lamport. The existence of refinement maggiitheor. Comput. Sci.
82(2):253-284, 1991.

2. G. Agha. Actors: A Model of Concurrent Computation in Distributedst&ns MIT
Press, Cambridge, Mass., 1986.

3. G.Agha, l.A.Mason, S. F. Smith, and C. L. Talcott. A foutiola for actor computation.
Journal of Functional Programming’:1-72, 1997.

4. G. Allwein and J. Barwise, editors.Logical Reasoning With Diagrams Oxford
University Press, Oxford, 1996.

5. G. Attardi and C. Hewitt. Specifying and proving propesiof guardians for distributed
systems, 1978.

6. R.J.R.Back. Refinement calculus II: Parallel and reactistems. In J. W. de Bakker,
W. P. de Roever, and G. Rozenberg, editBtepwise Refinement of Distributed Systems
volume 430 ofLecture Notes in Computer Scien&pringer—\Verlag, 1990.

7. R.J. R. Back and K. Sere. Stepwise refinement of paraligrihms. Science of
Computer Programmingl3:133—-180, 1989.

8. H. G. Baker and C. Hewitt. Laws for communicating paraflebcesses. InFIP
Congresspages 987-992. IFIP, Aug. 1977

9. R. Bardohl. Genged - a generic graphical editor for vidaaguages. 111998 IEEE
Symposium on Visual Languag&eptember 1998.

hosc. tex; 14/10/2002; 10:47; p.53

54

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.
20.
21.

22.

23.
24.
25.
26.
27.
28.

29.
30.

31.

S. F. Smith, C. L. Talcott

T. Bolognesi and E. Brinksma. Introduction to the ISOc#fimtion language LOTOS.
Computer Networks and ISDN Syster 25-59, 1987.

R. Breu, U. Hinkel, C. Hofmann, C. Klein, B. Paech, B. Reygnd V. Thurner. Towards
a formalization of the unified modeling language. ECOOP '97 volume 1241 of
Lecture Notes in Computer Scienpages 344-365. Springer-Verlag, 1997.

W. D. Clinger.Foundations of Actor SemanticBhD thesis, MIT, 1981. MIT Atrtificial
Intelligence Laboratory Al-TR-633.

R. S. Corporation.UML Notation Guide, version 1.1 Sept. 1997. Obtained From
http://ww. rational.com

G. Denker. DIL™: A Distributed Temporal Logic Supporting Several Commatiian
Principles. Technical Report , SRI International, Comp8eience Laboratory, 333
Ravenswood Ave, Menlo Park, CA 94025, 1998.appear

E. Dijkstra and C. ScholterPredicate Calculus and Program Semantieslume 14 of
Texts and Monographs in Computer Scienspringer-Verlag, 1990.

C. H. C. Duarte. A proof-theoretic approach to the desigobject-based mobility. In
H. Bowman and J. Derrick, editorBprmal Methods for Open Object-based Distributed
Systems, Volume pages 37-53. Chapman & Hall, 1997.

J. Elisberger, D. Hogrefe, and A. SarnmaDL—Formal Object-oriented Language for
Communication SystemBrentice Hall, 1997.

R. Eschbach, U. Glasser, R. Gotzhein, and A. Prinz. @nfdlmal semantics of
sdl-2000: a compilation approach based on an abstract schinga Ininternational
Workshop on Abstract State Machines (ASM’20@@Jume 1912 ofLecture Notes in
Computer Sciencespringer-Verlag, 2000.

M. Felleisen and D. P. Friedman. A syntactic theory ofusedjal state. Theoretical
Computer Scienc&9:243—-287, 1989.

S. FrglundCoordinated Distributed Objects: An Actor Based ApproacBynchroniza-
tion. MIT Press, 1996.

I. Greif. Semantics of communicating parallel processBechnical Report 154, MIT,
Project MAC, 1975.

E. Gunter, A. Muscholl, and D. Peled. Compositional ragessequence charts. In
T. Margaria and W. Yi, editorg?roceedings of the 7th International Conference on Tools
and Algorithms for the Construction and Analysis of SystefA€AS’'01) volume 2031
of Lecture Notes in Computer Scienpages 496-511. Springer, Apr. 2001.

D. Harel. Statecharts: A visual formalism for complestsyns. Science of Computer
Programming 8(3):231-274, June 1987.

C. Hewitt. Viewing control structures as patterns ofsfrag messages.Journal of
Atrtificial Intelligence 8(3):323-364, 1977.

C. Hewitt, P. Bishop, and R. Steiger. A universal modaletor formalism for artifi-
cial intelligence. InProceedings of 1973 International Joint Conference onfisidll
Intelligence pages 235-245, Aug. 1973.

C. A. R. HoareCommunicating Sequential ProcessBsentice-Hall, 1985.

Message Sequence Chart (MSC). ITU-T Recommendatio20Z.International
Telecommunications Union, Nov. 1996.

ITU-T. Revised Recommendation Z. 100 Specification ardcdption Language
(SDL), May 1994. Addendum 1996.

L. Lamport. The temporal logic of actionACM TOPLAS$16(3):872-923, May 1994.
Z. Manna and A. PnueliThe Temporal Logic of Reactive and Concurrent Systems:
Specification Springer Verlag, 1992.

I. A. Mason and C. L. Talcott. Actor languages: Their axnsemantics, translation, and
equivalenceTheoretical Computer Scienc220:409 — 467, 1999.

hosc. tex; 14/10/2002; 10:47; p.54

32.
33.
34.
35.
36.
37.

38.

39.

40.

41.

42.
43.

44,

Specification Diagrams for Actor Systems 55

R. Milner. A Calculus of Communicating Systemslume 92 ofLecture Notes in
Computer ScienceSpringer Verlag, 1980

R. Milner. Communicating and Mobile Systems: th€alculus Cambridge University
Press, May 1999.

G. Nelson. A generalization of dijkstra’s calculT®PLAS11:517-561, 1987.

A. RoscoeThe Theory and Practice of Concurrendyrentice—Hall, 1998.

J. Rumbaugh, |. Jacobson, and G. Boocbinified Modeling Language Reference
Manual Addison-Wesley, 1998.

V. A. Saraswat. Concurrent Constraint Programming ACM Doctoral Dissertation
Awards: Logic Programming. The MIT Press, Cambridge, MAQ3.9

S. Smith. On specification diagrams for actor systems. CInT. A. Gordon,
A. Pitts, editor,Proceedings of the Second Workshop on Higher-Order Teubriq
in Semantics Electronic Notes in Theoretical Computer Science. E&sevi998.
http://ww. el sevier.nl/|ocate/entcs/vol unel0. htm .

S. Smith and C. Talcott. Specification diagrams for aggetems. IrFormal Methods in
Object-Oriented Distributed Systems (FMOODEwer Academic Publishers, 1999.
C. L. Talcott. Interaction semantics for componentsisiriduted systems. In E. Najm
and J.-B. Stefani, editorést IFIP Workshop on Formal Methods for Open Object-based
Distributed Systems, FMOODS'96996. Proceedings published in 1997 by Chapman
& Hall.

C. L. Talcott. Composable semantic models for actorrteso Higher-Order and
Symbolic Computatiqri1(3):281-343, 1998.

C. L. Talcott. Actor theories in rewriting logic, 1999uksnitted for publication.

M. Wirsing. Algebraic specification. In J. van Leeuwetiif@, Handbook of Theoretical
Computer Science, Volume flages 675—788. North-Holland, Amsterdam, 1990.

M. Wirsing and A. Knapp. A formal approach to object otezhsoftware engineering.
In J. Meseguer, editoRroc. 1st Intl. Workshop on Rewriting Logic and Its Applioat,
number 4 in Electronic Notes in Theoretical Computer S@eldsevier, 1996. URL:
http://ww. el sevier.nl/|ocate/entcs/voluned. htm .

hosc. tex; 14/10/2002; 10:47; p.55

hosc. tex; 14/10/2002; 10:47; p.56

