
Specification Diagrams for Actor Systems

Scott F. Smith (scott@cs.jhu.edu)
The Johns Hopkins University

Carolyn L. Talcott (clt@cs.stanford.edu)
SRI International

Abstract. Specification diagrams (SD’s) are a novel form of graphical notation for speci-
fying open distributed object systems. The design goal is todefine notation for specifying
message-passing behavior that is expressive, intuitivelyunderstandable, and that has formal
semantic underpinnings. The notation generalizes informal notations such as UML’s Sequence
Diagrams and broadens their applicability to later in the design cycle. Specification diagrams
differ from existing actor and process algebra presentations in that they are not executableper
se; instead, like logics, they are inherently more biased toward specification. In this paper we
rigorously define the language syntax and semantics and giveexamples that show the expres-
siveness of the language, how properties of specifications may be asserted diagrammatically,
and how it is possible to reason rigorously and modularly about specification diagrams.

Keywords: specification, message passing behavior, actor systems, interaction semantics

1. Introduction

Our goal is to define a notation for specifying message-passing behavior that
is expressive, intuitively understandable, and that has a rigorous underlying
semantics. Many specification languages that have achievedwidespread us-
age have a graphical presentation format, primarily because engineers can
understand and communicate more effectively by graphical means. Popular
graphical specification languages include The Unified Modeling Language
(UML) and its predecessors [36], Petri nets, Statecharts [23], and SDL [28,
17]. Our aim here is to define aspecification diagram(SD) language with
similar intuitive advantages that combines greater expressivity with formal
underpinnings. The language is also designed to be useful throughout the
development process to give: initial sketches of the overall system structure,
informal scenarios of possible behavior early in the designcycle, or detailed
specifications of individual components that may serve as formal documenta-
tion of critical aspects of their behavior and support rigorous checking that
an implementation meets a given specification. It may be usedas a pro-
gramming language, or for giving diagrammatic assertions of correctness that
encompass safety and liveness properties that can be understood in terms of
the semantics of the language without need to use a separate logic. There
is a textual form which is useful for formal manipulations. The design of
the SD language draws on concepts from actor event diagrams [12], UML

c© 2002Kluwer Academic Publishers. Printed in the Netherlands.

hosc.tex; 14/10/2002; 10:47; p.1

2 S. F. Smith, C. L. Talcott

Sequence Diagrams [36], process algebra [32, 26], and Dijkstra-style weakest
precondition calculus [34]. The underlying interaction model is that of the
actor model: object- and not channel-based naming is used, open systems
are treated explicitly, and message passing is asynchronous, fair, and with
nondeterministic arrival order.

This section concludes with a brief introduction to the underlying actor
interaction model. Section 2 introduces the diagram syntax, and section 3
illustrates the use ofSD’s with a variety of examples. The operational and
denotational (interaction) semantics ofSD components is given in section 4.
Section 5 illustrates the use of the semantic framework to reason about spec-
ifications.

1.1. ACTOR CONCEPTS

We now provide a brief overview of the underlying actor model[24, 8, 2, 3].
Actors are independent computational agents that interactsolely via asyn-
chronous message passing. Actors may dynamically create other actors. Like
objects in an object-based system, each actor has a uniquenameand a mes-
sage can only be read (received) by the actor to whom it was sent. All actor
computations must obey the actor locality laws [8]: the names an actor can
know are those given to it at creation time, names it has received in a message,
and names of actors it has created; an actor can only send messages to actors
whose names it knows; messages can only contain names of actors known by
the sender; and the names given to an actor at creation time must be among
those known by the creator. Finally, all messages must eventually arrive at
their destination, possibly with an arbitrarily long delay(fairness).

Individual actors are collected into open distributed components calledac-
tor system components. Each component specifies only part of a system; there
will be someexternal actorsthat actors of the local system know about and
may interact with. Additionally, of the local actors, only some of their names
may be known by external entities; these are thereceptionists. These sets
may grow over time: the external actors will grow based on names received
in messages from the outside, and receptionists may grow if new local names
are sent out in messages. We useρ to denote the set of receptionists andχ to
denote the set of external actors of an actor system component. The pair(ρ, χ)
is called the systeminterfaceand we writeSρ

χ to indicate an actor system
componentS with receptionistsρ and known external actorsχ. The interface
can be thought of as an abstract input/output specification.Since an actor can
only send messages to actors it knows, actors outside a component can only
send messages to actors in the component that are receptionists (input) and
conversely, actors in the component can only send messages to actors outside
that are in the set of externals (output). Note that the system may contain

hosc.tex; 14/10/2002; 10:47; p.2

Specification Diagrams for Actor Systems 3

actors not inρ; these actors are locally known only. Dually, there can be other
actors external to the system not inχ.

What we observe about an actor system component is its patterns of inter-
action with its environment. To describe such interactionswe need at least a
set ofactor namesand a set ofmessages. Formally we have

Definition 1.1 (Actor Communication Basis): An actor communication ba-
sis provides a countably infinite seta ∈ A of actor names and a setM ∈
Msg of messages. Message packetsmp are of the forma / M , indicating
messageM is sent to actora. We letMP be the set of message packets.
We assume given a functionacq(M) that returns the finite set of actor names
(acquaintances) communicated in a message.

An individual “run” of an actor system component is modeled by a possi-
bly infinite sequence of inputs,in(a/M), and outputs,out(a/M), indicating
the communication events and the order they came in and out ofthe system.
We call one such infinite sequence (together with the system interface) an
interaction path, and model the behavior of an actor system component by
the set of all of its possible interaction paths. A componentwill also have
internal computation actions, but these are not observableoutside the compo-
nent and so do not occur in the interaction paths. Thecomputation pathsof a
component consist of its internal actions interleaved withinput/output events.
Interaction paths are defined by first determining the computation paths, and
then projecting out the internal actions. We use this infinite trace form of
model because it directly corresponds to the observable system behavior:
watching a given component run, the input and output operations in sequence
are exactly what can be observed. Other models including finite traces and
bisimulation equivalences also may of course be used.

2. Syntax

In this section we present the syntax ofSD’s, and an informal description of
their meaning. We use two forms of notation for diagrams, onegraphical and
one textual. The graphical one is intended for use in practice: the graphical
drawings are highly intuitive. However for mathematical study the textual
form is perhaps easier to manipulate. Figure 1 presents the graphical diagram
elements. Vertical lines indicate progress in time going down, expressing
abstract causal ordering on events, with events above necessarily leading to
events below. This causal ordering will be termed acausal thread. Note there
is no necessary connection between these “threads” and actors or processes,
as the threads exist only at the semantic level: a single thread of causality
may involve multiple actors, and a single actor may appear tohave multiple
threads of causality. The componentsD in the figure may themselves be any
diagram: the figure is a graphical grammar. The base case diagram elements

hosc.tex; 14/10/2002; 10:47; p.3

4 S. F. Smith, C. L. Talcott

D

D

D D D. . . .D D D. . . .

(

(

D

a M

∇

∇

a M

∇

∇
D

[

[0..∞

pick x fresh x
constrain φ

assert φ
x := ψ

D

X

XD

{
{

sequence parallel choice fork skip

send receive loop

EOD

scope

pick fresh constrain assert assign

recursion

variablerecursion

Figure 1. Specification Diagram Elements

such assend, receive, := , etc., are executed atomically. The figures in the
next section present several simple examples ofSD’s.

Before describing the diagram elements one-by-one, we define the basic
mathematical building blocks. We assume given a mathematical universe,
U, which contains (as subsets) at leastA, Msg, MP, Nat (the natural
numbers), andBool (the booleanstrue and false). We use mathematical
set theory to define operations and relations onU. Diagrams have a state
component represented using state variables which take on values inU. Xd

is the set of diagram state variables andx, y, z, . . . denote elements ofXd.
An environmentγ is a finite function fromXd to U used to model the as-

hosc.tex; 14/10/2002; 10:47; p.4

Specification Diagrams for Actor Systems 5

signment of state variables to their values. The remaining building blocks
are expressions used in a variety of ways: assignments, constraints, message
patterns. Rather than fix a syntax for expressions we assume given a set,Ud,
of abstract expressions. Formally an abstract expression is a partial function
from environments to values in the universe. We refer to the application of
an expression to an environment as its evaluation in that environment. We let
ψ range overUd, Md range over abstract expressions with value inMsg,
ad range over abstract expressions with value inA, andφ range over ab-
stract expressions with value inBool. We say that the variablex occurs
in ψ if ψ(γ) 6= ψ(γ′) for someγ, γ′ which differ just at the variablex:
Dom(γ)∪{x} = Dom(γ′)∪{x} andγ(y) = γ′(y) for y ∈ (Dom(γ)−{x}).
The above conditions imply thatx is in the domain of at least one ofγ or γ′

and ifx is in the domain of both, then the two environments assignx different
values. Our convention regarding equality of partial termst, t′ is thatt = t′

means both are undefined, or both are defined and the values areequal. This
is equivalent to extendingUd with a new element to represent undefinedness.
Abstractly,ψ is just a partial function. In practice it could be undefined on
some environment for many reasons, for example: a variable whose value is
needed is not defined; or a function used to compute the meaning of ψ is not
defined for the particular valuation of variables.

Abstract message expressionsMd may be used as patterns in much the
same way that algebraic terms serve as patterns in presenting conditions or
rewrite rules. In the case of message patterns, the pattern variables are the
state variables occurring inMd and a messageM matchesMd just if there
is an environmentγ whose domain is the set of pattern variables ofMd such
thatMd(γ) = M . In this case we say thatγ binds the pattern variables to their
matching values. For example ifx is a diagram state variable, thenset(x) is
a message pattern and the messageset(0) matches this pattern bindingx to
0.

We use the informal convention that expressionψ written asx + 1 is an
abbreviation forψ(γ) equal toγ(x) + 1, and “x ∈ S” means a predicateφ
whereφ(γ) iff γ(x) ∈ S.

The individual graphical elements are now informally described. With
each element, the textual grammatical equivalent is given in parentheses.

sequence (D1;D2) Vertical lines (causal threads) represent necessary tem-
poral sequencing of events inD1 before those inD2.

parallel (D1 | D2) Events in parallel diagrams have no causal ordering be-
tween them, but are after events above and before events below.

choice (D1 ⊕D2) One of the possible choices is taken. There is no require-
ment that the choice be fair, in the sense that for a particular actor com-
putation the same branch could always be taken.

hosc.tex; 14/10/2002; 10:47; p.5

6 S. F. Smith, C. L. Talcott

fork (fork(D)) A diagram is forked off which hereafter will have no direct
causal connection to the future of the current thread (however, messages
could indirectly impose some causality between the two). The paral-
lel and fork operators are similar, but parallel threads must eventually
merge, while forked threads are asymmetrical in that the forked threads
never merge.

skip (skip) Does nothing.

send (send(ad /Md)) A message is sent toad with contentsMd. There is a
requirement that message delivery be fair, in the sense thatany message
sent must eventually arrive at its destination.

receive (receive(ad /Md)) A message matchingMd is received by actor
ad, the pattern variables occurring inMd are bound to the matching
values in the scope of thereceive. This statement blocks until a mes-
sage arrives matching its pattern. If none arrives, the computation path
is considered unfair and not admitted. Dually, if a message arrives but is
never matched by anyreceive, that computation path is also considered
unfair and is not admitted.

loop ([D]0...∞) The diagram is iterated some numbern times, wheren is
nondeterministically chosen from the interval0 . . .∞. The casen = ∞
corresponds to loop-forever. The textual syntax here is notin the core
language—it is defined in the macro library below, along withvariants.

scope ({x0, . . . , xn : D}) Brackets demarcate static scoping of state variables.
In the official textual syntax explicit variable declarations must be given
(and the variables initially given arbitrary values), but by an implicit
convention discussed below, bracketing alone may be used todefine
variable extent.

EOD (eod) Denotes the end of a causal thread in the diagram. This is also
not core syntax and is defined in the macro library.

pick (pick(x)) State variablex is assigned arbitrary contents.

fresh (fresh(x)) State variablex is given contents consisting of an actor
name not currently in use.

constraint (constrain(φ)) A constraintφ is placed on the current state of
the computation, which must be met. Otherwise the computation path is
not admitted.

assertion (assert(φ)) An assertionφ is made. Unlikeconstrain, anassert
that evaluates to false is an explicit signal of failure of some property, but

hosc.tex; 14/10/2002; 10:47; p.6

Specification Diagrams for Actor Systems 7

otherwise, an well-formed assertion (that evaluates to a boolean value)
has no computational effect.

assign(x := ψ) A variable is dynamically assigned a new value given by
evaluating the assignment body,ψ in the current environment.

recursion (recX.D,X) A boxed diagram fragment may refer to itself by
name,X, soX occurring inside the box refers to the whole box.

recursion variable (X) Xr is a countable set of recursion variables, with
X ∈ Xr.

In the textual language, sequencing is right-associative and binds most
tightly, followed by choice and then parallel composition binding most loosely.
Choice and parallel composition are also associative and indiagram nota-
tion we treat them as multi-ary constructs rather than iterating the binary
construct.

We define some syntactic sugar which allows variable declarations at a
scope boundary to be implicit:{D} abbreviates{x0, . . . , xn : D} for state
variablesx0, . . . , xn all occurring directly inD (not in a deeper lexical level)
aspick(xi), fresh(xi), or receive(ad /Md), with xi occurring inMd.

We use the convention thatExampleMacro(s, t, u) = D defines a macro.
Macros are just diagram producing functions: we will be careful not to de-
fine self-referential macros. Macro parameters (s, t, u in the example) are
taken to be meta-variables ranging overU and not state variables. In order
to avoid ambiguity between the two kinds of variable, all metavariables must
be explicitly listed as the parameter to a macro. Certain syntax is easily en-
codable via macros and so is not defined in the core grammar. Here are some
examples.

Definition 2.1 (Diagram Macro Library):

eod: eod = recX.(skip;X)

initialized pick: pick(x = u) = pick(x); constrain(x = u)

constrained pick: pick(x ∈ X) = pick(x); constrain(x ∈ X)

loop: [D]0...∞ = recX.((D;X) ⊕ skip)

finite iteration: [D]0...ω =

pick(x ∈ Nat);
recX.constrain(x = 0) ⊕ constrain(x > 0);x := x− 1;D;X

wherex is a state variable not occurring inD

loop-forever: [D]∞ = recX.(D;X)

hosc.tex; 14/10/2002; 10:47; p.7

8 S. F. Smith, C. L. Talcott

if-then: if φ thenD1 elseD2 =

(constrain(φ);D1) ⊕ (constrain(¬φ);D2)

while-do: while φ doD =

recX.(constrain(φ);D;X ⊕ constrain(¬φ))

abort path: abort = constrain(false)

failure: fail = assert(false)

initialized decl: { . . . , x = u, . . . : D} =
{ . . . , x, . . . : constrain(x = u);D}

constrained decl: { . . . , x ∈ S, . . . : D} =
{ . . . , x, . . . : constrain(x ∈ S) : D}

constrained receipt: receive(ad /Md ∈ S) =

receive(ad /Md); constrain(Md ∈ S)

Translation from graphical diagrams into textual notationis obtained by
inductively replacing the graphical syntax with the corresponding textual syn-
tax listed above. Note that macros such as theinitial/constrained
pick/decl macros do not provide atomic execution of the sequence of
actions in their expansion. Thus they have the “expected” semantics only if
not placed in parallel with diagrams that read/write the assigned/constrained
variables. Atomicity, if desired, could be obtained by using more complex
macros. Atop-levelSD includes an interface, notated〈D〉ρχ. Top-level dia-
grams are actor system components (§ 1.1) and are given meaning in terms of
a transition system from which sets of interaction paths arederived. We will
not always include the phrase “top level” but meaning shouldbe clear from
context.

SD’s combine features typically found in concurrent object-based pro-
gramming languages— notions of local name, variable, assignment, loop,
if-then, and message send and receipt—with features more appropriate for
specification language, including assertions, constraints, picking a value from
a (possibly infinite) set of possible values. They allow namepassing and the
dynamic generation of fresh names, a feature shared with theπ-calculus,
while obeying the locality (acquaintance) laws of actor computation [8]. As
we will see in section 4 the fairness properties of computations described
by SD’s differ those of traditional actor languages. The notion of constraint
is analogous to theassumepredicate of Dijkstra’s language [15], while the
assertion primitive is analogous to Dijkstra’sassertpredicate. The constrain

hosc.tex; 14/10/2002; 10:47; p.8

Specification Diagrams for Actor Systems 9

predicate in particular is an important element of the language, greatly in-
creasing its power. A constraint may be any mathematical predicate, and a
constraint failing does not indicate a run-time error, it indicates that such
a computation path will not arise, i.e. the path is “cancelled in the middle
of computing” as if it never happened. This predicate is thusimpossible to
implement in full generality, but it gives the specificationlanguage significant
flexibility. Examples in the next section should make this clear. There are
some surface similarities ofconstrain andassert with the ask and tell
agents of concurrent constraint programming [37]. Tell constraints restrict
the solution space, and ask constraints fire only when their precondition is
in the solution space.constrain has some commonality with tell in that it
restricts the solution space, but the case of unsatisfiability is handled very
differently—in our system the entire computation vanishesas if it never hap-
pened, whereas in CLP, failure value is returned. The ask constraints are a
guarded, blocking form of constraint which has no real analogue here.SDas-
sertions are used to express properties of state variables at given points in the
computation, and can be used to express both safety and liveness properties
as the examples below will demonstrate. Assertions are a means of observing
the system as it evolves. A well-formed assertion (one that always evaluates
to a boolean) has no effect on the interaction semantics of anSD.

3. Using Specification Diagrams

In this section we illustrate the full range of functionality of the language via
examples. Starting with simple examples that show how various patterns of
message passing may be specified, we progress to examples of how differ-
ent specifications may be related and how more advanced properties may be
expressed.

3.1. EXPRESSING PATTERNS OF MESSAGE PASSING

We give here a series of examples illustrating howSDconstructs may be used
to specify component behaviors and scenarios, and give a rough idea of the
meaning of diagrams as sets of interaction paths.

3.1.1. Simple Memory Cell
This simple cell holds a single value, and responds toset andget messages.

Cell(a) =

hosc.tex; 14/10/2002; 10:47; p.9

10 S. F. Smith, C. L. Talcott

ci reply(value)

Cell(a) =

(

a set(value)@c

∇

∇

c ack

∇

∇

[0..∞

a get@c

∇

∇

c reply(value)

∇

∇

pick(value)

(

[

CellInteractor(a,ci,w) =

ci ack

∇

∇

a set(0)@ci

∇

∇

a set(5)@ci

∇

∇

ci ack

∇

∇

a get@ci

∇

∇

w value

∇

∇

∇

∇

Figure 2. A Memory Cell and an Example Cell Interactor

{ pick(value); (* cell value, initially arbitrary *)

[(receive(a / set(value)@c); send(c / ack))

⊕

(receive(a / get@c); send(c / reply(value)))]0...∞ }

The corresponding graphicalSDappears on the left of Figure 2. The “0 . . .∞”
iteration models all possible environment behaviors: the environment may
send0, an arbitrary finite number, or infinitely manyset/get requests. In
the a / set(value)@c message pattern, variablesvalue and c are implic-
itly declared pattern variables, bound by the receipt action. For example, the
messagea / set(2)@sam matches this pattern, bindingvalue to 2 andc to
sam. send(c / ack) is an asynchronous send, and thus a receive of another
set/get request can immediately follow, even before theack has arrived
at its destination. The “{ . . . }” around the whole specification is the static
scoping construct. By the implicit convention of the previous section, the
notation without any variables listed (as above) indicatesall variables are
declared. So, the above is shorthand for “{ value, a, c : . . . }.” The notation
(* ...*) is used to add comments to textualSD’s.

A top-level (interfaced) specification for a memory cell is〈Cell(a)〉a
∅
. The

meaning of this top-level diagram,[[〈Cell(a)〉a
∅
]], is a setIpCell of interaction

paths. TheSD meaning function[[·]] is formally defined in Definition 4.10 of
Section 4. Interaction sequences inIpCell include ones beginning as follows:

(1) in(a / set(0)@c), out(c / ack), in(a / get@c), out(c / reply(0)), . . .

(2) in(a / set(0)@c), in(a / get@c), out(c / reply(x)), out(c / ack), . . .

for x arbitrary

(3) in(a / set(0)@c), out(c / ack), in(a / get@c′), out(c′ / reply(0)), . . .

(4) in(a / set(0)@c), out(c / ack), in(a / set(1)@c′),

in(a / get@c), out(c / reply(1)), out(c′ / ack) . . .

hosc.tex; 14/10/2002; 10:47; p.10

Specification Diagrams for Actor Systems 11

(5) in(a / set(0)@c), in(a / set(5)@c), out(c / ack),

out(c / ack), in(a / get@c), out(c / reply(0)), . . .

In the second example, since theget is sent before arrival of theack, the
value received may have been the original (arbitrary) valueplaced in the cell.
The third example shows how customers may be different for each message.
The fourth example shows how aget may in fact get a reply which incorpo-
rates a previousset that has not in fact been observablyack’ed yet, due to
internal buffering delaying the finalack. Example five shows how multiple
set requests will not necessarily be handled in the order they came in, since
there is buffering inside the system which is independent ofarrival order.

In the operational semantics forSD’s, each internal action appears in the
computation paths, and these internal actions are then projected out to give
the interaction paths. An example computation path which could produce
interaction path (1) above could start as:

pick, in(a / set(0)@c), choose(l), receive(set(0)@c),
send(c / ack), out(c / ack), . . .

pick is the choice of arbitrary initialvalue, choose(l) indicates the left
branch of the choice was taken, and the internalreceive/send are also
actions in the computation path. The internal actions are all projected out
in forming the interaction path (1) above, since they are notpart of the ob-
servable behavior of the system.

Choice,⊕, in SD’s most closely corresponds to what is often called “in-
ternal” choice in process algebra: a coin is flipped and one branch is taken.
However, it is not quite that simple, because the combination of choice and
the constraints imposed by fairness of message delivery allow “external”
forms of choice to be represented with the internal choice operator. In par-
ticular for theCell, the choice between whether to try to receive aset or get
is made internally by a coin flip,but, if the get branch was chosen and no
get messages are forthcoming, the path is unfair and will not arise. This
subtle interplay between choice and fairness is one of the features of the
language that takes some getting used to, but it is an elegantand powerful
mechanism. This topic is discussed further in Section 4.3.3below, after the
formal semantics have been given.

The interaction of path (5) may be expressed diagrammatically via this
CellInteractor, also shown in Figure 2:

CellInteractor(a, ci, w) =

{ send(a / set(0)@ci); send(a / set(5)@ci);

(receive(ci / ack) | receive(ci / ack));

send(a / get@ci); receive(ci / reply(value)); send(w / value) }

hosc.tex; 14/10/2002; 10:47; p.11

12 S. F. Smith, C. L. Talcott

The finalvalue sent to externalw in combined top-levelSD

〈CellInteractor(a, ci, w) | Cell(a)〉∅w

might be either 0 or 5. This is an example of usingSD’s to describe possible
scenarios. Note that ifciwere a receptionist of the top-level diagram, the final
value sent could be arbitrary since theack messages could have been sent in
from the outside. A path with this behavior is

in(ci / ack), in(ci / ack), out(w / u), . . . for u any message

If the CellInteractor had created a fresh actor name to serve as customer via
fresh(c) as its first step, and usedc instead ofci in theset andack mes-
sages, the above anomalous behavior would not arise since the ack channel
would not be externally visible.

3.1.2. Ticker
A ticker is a simple monotonically increasing counter whichreplies totime
messages with its current count value. This example illustrates the unbounded
nondeterminism present in actor computations. A high-level specification is
as follows; see Figure 3 for a diagram.

Ticker(a) =

{ pick(count ∈ Nat);

[[receive(a / time@x); send(x / reply(count))]0...ω;

count := count + 1]0...∞ }

This succinct specification expresses the fact that the count can stay constant
for finitely many (0 . . . ω) time requests, but then must increase. The count
may also be repeatedly incremented without receiving anytime requests, if
the0 . . . ω repeatedly chooses0. However, if there is atime request waiting
to be received, then a non-zero choice must eventually occur. A top-level
ticker is〈Ticker(a)〉a

∅
. The interaction paths in[[〈Ticker(a)〉a

∅
]] consist ofa /

time@c requests comingin and repliesc / reply(count) goingout of the
system. It is incorrect to state that thecount reply values sent out will be
monotonically increasing, due to local buffering that may have happened;
but, the observedcount values must eventually increase.

3.1.3. Ticker Factory
This example of a factory for producing tickers shows how fresh actors may
be dynamically generated, and shows a use offork. It also appears in Figure
3.

TickerFactory(a) =

hosc.tex; 14/10/2002; 10:47; p.12

Specification Diagrams for Actor Systems 13

0..ω

Ticker(a) =

a time@x

∇

∇

[0..∞
pick(count ∈ Nat)

[

[

[
count := count + 1

x reply(count)

∇

∇

{

{ TickerFactory(a) =

a new@c

∇

∇

[0..∞

[

c reply(t)

∇

∇

{

{

fresh(t)

Ticker(t)

Figure 3. High-level Specification of a Ticker and a Ticker Factory

{ [receive(a / new@c);

fresh(t);

fork(Ticker(t));

send(c / reply(t))]0...∞ }

The interaction paths in[[〈TickerFactory(a)〉a
∅
]] contain interactions with the

ticker-factory actor: incoming requestsin(a / new@c) and associated out-
going repliesout(c / reply(t)). t is the name of the newly created ticker
actor and is exported in the reply. This causest to be added to the set of re-
ceptionists, initially just{a}. Thus the interaction paths contain as sub-paths
interaction paths for each exported ticker-actor.

3.1.4. Function Composer
In this example we define a distributed method for computingg ◦ f for com-
posable functionsf andg: the functions are computed by two different actors
that are coordinated by a third actor. Graphical diagrams for this specification
are in Figure 4.

For any actor name,a, and functionf ∈ V → W , the following dia-
gramF(a, f) specifies a component that accepts requests toa of the form
compute(v)@c and sends toc areply(f(v)).

F(a, f) =

{ x, xc : [receive(a/compute(x) @ xc); send(xc/reply(f(x)))]0...∞ }

For any actor namesa, af , ag , FC(a, af , ag) specifies a component that
accepts requests toa of the formcompute(v)@c, asksaf to compute on v,
and then asksag to compute on the result fromaf , sending that result toc.

FC(a, af , ag) =

hosc.tex; 14/10/2002; 10:47; p.13

14 S. F. Smith, C. L. Talcott

∇

∇

F(a,f) =

a compute(x)@xc

∇

∇

[0..∞

[
xc reply(f (x))

{

{

∇

∇

FC(a,af,ag) =

a compute(x)@xc

∇

∇

[0..∞

[

xc reply(z)

{

{

fresh(xf)

af compute(x)@xf

∇

∇

fresh(xg)

ag compute(y)@xg

∇

∇

xf reply(y)

∇

∇

xg reply(z)
∇

∇

Figure 4. Function Composer Specifications

{ x, y, z, xc, xf , xg :

[receive(a / compute(x) @ xc); fresh(xf); send(af / compute(x) @ xf);

receive(xf / reply(y)); fresh(xg); send(ag / compute(y) @ xg);

receive(xg / reply(z)); send(xc / reply(z))]0...∞ }

The fresh namesxf andxg are private namesFC sends as the customer to the
targetaf orag only. The target in turn replies to this actor name, guaranteeing
the reply came from the target or the target’s accomplice, and ruling out the
possibility of spoofing. This is because outsiders may only send to actors
in the receptionist set, and these names will not be there. Thus in a context
whereaf is the name of anf computer andag is the name of ag computer,
FC coordinatesaf andag to become ag◦f computer.C(a, f, g, af , ag) puts
FC in such a context:

C(a, f, g, af , ag) = (FC(a, af , ag) | F(af , f) | F(ag , g))

The full specification ofC(a, f, g, af , ag) appears diagrammatically in Fig-
ure 5.

3.2. RELATING SPECIFICATION DIAGRAMS

SD’s can be used in a wide range of roles: as an implementation level de-
scription expressing low-level code-like details, for a high-level but precise
behavioral description; and for a description of abstract properties of the
possible interactions of a system. In this section we introduce notions of
interaction refinement and equivalence used to relateSD’s. These relations

hosc.tex; 14/10/2002; 10:47; p.14

Specification Diagrams for Actor Systems 15

C(a,f,g,af,ag) =

a compute(x)@xc

∇

∇

[0..∞

[

xc reply(z)

∇

∇

{

{

fresh(xf)

af compute(x)@xf

∇

∇

fresh(xg)

ag compute(y)@xg

∇

∇

xf reply(y)

∇

∇

xg reply(z)

∇

∇

[0..∞

[
{

{

[0..∞

[
{

{
af compute(x)@xc

∇

∇

xc reply(f (x))

∇

∇

xc reply(g (x))

∇

∇

ag compute(x)@xc
∇

∇

Figure 5. Composition of the Function Composer

are defined in terms of the semantic function[[_]] (see Definition 4.11 in sec-
tion 4), which gives the semantics of a top-level diagram as aset of interaction
paths.

3.2.1. Interaction Refinement
One specification is aninteraction refinementof another if every interaction
path permitted by the first is also permitted by the second.

Definition 3.1 (Interaction Refinement):

〈DI〉
ρ
χ

i
⊆ 〈DS〉

ρ
χ iff [[〈DI〉

ρ
χ]] ⊆ [[〈DS〉

ρ
χ]]

The notion of refinement appears in many specification formalisms in-
cluding: algebraic specifications [43], Back’s action systems [7, 6], the Abadi
and Lamport work on refinement mappings [1] (SD refinement corresponds
to their implementsrelation), and in the work on CSP [26, 35]. CSP is the
most closely related to our approach and we discuss this relationship in§ 6.

hosc.tex; 14/10/2002; 10:47; p.15

16 S. F. Smith, C. L. Talcott

CountingTicker(a) =

a time@c

∇

∇

[0..∞
pick(count = 0)

[

count := count + 1

c reply(count)

∇

∇

{

{LiveTicker(a) =

a time@c

∇

∇

[0..∞

[

pick(count)

c reply(count)

∇

∇

{

{

Figure 6. Live Ticker and Counting Ticker Specifications

3.2.2. Refinement and the Ticker
As an example of using the refinement relation consider the following SD
(shown in Figure 6):

LiveTicker(a) =

{ [receive(a/time@ c); pick(count); send(c/reply(count))]0...∞ }

This specification of the ticker only requires that all time requests receive a
reply. The refinement relation

〈Ticker(a)〉a∅
i
⊆ 〈LiveTicker(a)〉a∅

then is in effect asserting the liveness of theTicker. (Note, such a liveness
property was termedresponsivenessby Hewitt [5].)

Another form of refinement is when oneSD (thought of as an implemen-
tation) is more deterministic than the other (thought of as aspecification). For
the ticker, an implementation could be

CountingTicker(a) =

{ pick(count = 0);

[receive(a / time@ c);

send(c / reply(count));

count := count + 1]0...∞ }

This implementation replies with a number one bigger, refining theTicker
specification.

〈CountingTicker(a)〉a∅
i
⊆ 〈Ticker(a)〉a∅

Note that by transitivity,

〈CountingTicker(a)〉a∅
i
⊆ 〈LiveTicker(a)〉a∅

hosc.tex; 14/10/2002; 10:47; p.16

Specification Diagrams for Actor Systems 17

3.2.3. Maximal and Minimal Diagrams
To better understand the dynamic nature of receptionist andexternal actor
sets, consider the following specification.

MaximalSpec(ρ0, χ0) =
pick(rho = ρ0, chi = χ0);
[pick(r ∈ rho); receive(r / m); chi := chi ∪ acq(m) − rho

⊕
pick(z ∈ chi); [fresh(q)]0...ω; pick(x);
send(z / x); rho := rho ∪ acq(x) − chi

]0...∞

MaximalSpec specifies the largest possible set of interaction paths for asys-
tem with interface(ρ, χ). In particular it has the property of beingmaximal

with respect to the
i
⊆ relation:

〈D〉ρχ
i
⊆ 〈MaximalSpec(ρ, χ)〉ρχ

for any specification diagram〈D〉ρχ. The specification receives arbitrary data,
and sends arbitrary messages to its acquaintances. To be truly general in this
regard, it needs to create arbitrarily (finitely) many new names for possible
insertion into each message it sends out; that is the purposeof thefresh(q)
loop above. The value ofpick(x) will have acquaintances that may include
these fresh names. The diagram variablesrho andchi serve to keep explicit
track of the evolvingρ andχ sets. If a new name is received in a message, it
is added toext and then may later be the target of a message.MaximalSpec
is the analog of the CSP processChaosA which can participate in any action
(over its alphabetA) and can also refuse any action.ChaosA is refined, in the
CSP sense, by every process with alphabetA.

At the other extreme of the refinement relation, is the following diagram.

MinimalSpec = {constrain(false)}

For any receptionists,ρ, and externalsχ, the top-level diagram

〈MinimalSpec〉ρχ

has no admissible interaction paths as all paths will be aborted by the failed
constraint. The empty set of interaction paths can also be expressed without
appealing toconstrain, by instead requiring that a message be received that
can not possibly be delivered.

MinimalSpec = {fresh(x); receive(x / nil)}

In particular,MinimalSpec, just above must receive a message for a newly
created actor whose name is not known to any possible sender.Thus top-
level specification〈MinimalSpec〉ρχ is minimal with respect to the refinement

hosc.tex; 14/10/2002; 10:47; p.17

18 S. F. Smith, C. L. Talcott

relation

〈MinimalSpec〉ρχ
i
⊆ 〈D〉ρχ

There are no “empty” processes in CSP.MinimalSpec can be thought of as
an inconsistent specification, emphasizing the logical or specification aspect
of SD’s. The minimal CSP process,STOPA, has a single trace, namely the
empty trace, and can refuse any subset ofA. This process corresponds to
the top-level specification diagram〈eod〉ρχ which also has a single admissible
interaction path, the empty path with interface(ρ, χ), and we have

〈MinimalSpec〉ρχ
i
⊆ 〈eod〉ρχ

but it is not the case that

〈eod〉ρχ
i
⊆ 〈D〉ρχ

for any top-level diagram〈D〉ρχ. For example, ifD = {receive(a / nil)}
with a ∈ ρ, then the empty interaction path is not an admissible path for 〈D〉ρχ
sinceD specifies that exactly one message be received. The difference here is
that interaction semantics is based on complete fair computations rather than
just the finite computations.

3.2.4. Input Restriction
We often want to consider only the interaction paths of a component in which
inputs from the environment are restricted to a subset of themessages under
consideration. For example, we are only interested in inputs of compute re-
quests to the function composer. The other messages are intended for internal
communication only.

Definition 3.2 (Input restriction): LetMPa be a subset ofMP then〈D〉ρχ �

MPa is the restriction of the interactions of top-level diagram〈D〉ρχ to inputs
in MPa. In particular

[[〈D〉ρχ � MPa]] = [[〈D〉ρχ]] � MPa

where for any setP of interaction paths,P � MPa is the subset of interaction
paths inP such that every input interaction,in(mp), hasmp ∈ MPa.

3.2.5. Input Restriction for the Function Composer
For example, letMPcompute be the subset ofMP with contents of the form
compute@c and targeta. Then the interaction paths of〈C(a, f, g, af , ag)〉a

∅
�

MPcompute are those in which onlycompute requests are accepted from the
environment.

3.2.6. Interaction equivalence
When two specifications each refine the other they are said to be interaction
equivalent. This means that their observable behaviors are identical from the

hosc.tex; 14/10/2002; 10:47; p.18

Specification Diagrams for Actor Systems 19

ParTicker(a) =

[∞

pick(count = 0)

[
{

{

a tick

∇

∇

count := count + 1

a tick

∇

∇

a tick

∇

∇

a time@x

∇

∇

x reply(count)

∇

∇

[0..∞

[

ChoiceTicker(a) = [0..∞

pick(count = 0)

[
{

{

a tick

∇

∇

count := count + 1

a tick

∇

∇

a tick

∇

∇

a time@x

∇

∇

x reply(count)

∇

∇

a tick

∇

∇

(

(

Figure 7. Alternate Codings: Choice Ticker and Parallel Ticker Specifications

point of view of the environment. For example if an implementation fully
and faithfully satisfies a specification, the two must have the same sets of
interaction paths, and thus they are interaction equivalent.

Definition 3.3 (SD interaction equivalence):

〈DI〉
ρ
χ

i
' 〈DS〉

ρ
χ iff [[〈DI〉

ρ
χ]] = [[〈DS〉

ρ
χ]].

3.2.7. Interaction Equivalence for the Function Composer
A good example of interaction equivalence is found in the context of the
function composer example above. A high-level specification for computing
g ◦ f is justF(a, g ◦ f) which directly computesg ◦ f . We may then assert
the following.

Theorem 3.4:

〈C(a, f, g, af , ag)〉a∅
i
' 〈F(a, g ◦ f)〉a∅

This theorem will be proved in Section 5.3. The proof illustrates the use
of semantics-based techniques for reasoning aboutSD’s.

3.2.8. Interaction equivalence and the Ticker
A more low-level specification of a ticker might usetick messages to update
its counter: every time it receives atick, it increments its counter and sends
itself anothertick. (also see Figure 7):

ChoiceTicker(a) =

hosc.tex; 14/10/2002; 10:47; p.19

20 S. F. Smith, C. L. Talcott

{ pick(count = 0); send(a / tick);

[receive(a / tick); count := count + 1; send(a / tick)

⊕

receive(a / time@ x); send(x / reply(count))]0...∞;

receive(a / tick)

(* eat final tick if finite iteration *) }

Another reasonable alternative to express this same idea isParTicker, which
uses parallelism between thetick and time instead of nondeterministic
choice (also shown in Figure 7):

ParTicker(a) =

pick(count = 0); send(a / tick);

[receive(a / tick); count := count + 1; send(a / tick)]∞

|

[receive(a / time@ x); send(x / reply(count))]0...∞

No final receive(a / tick) is needed in the case ofParTicker(a) since
the tick receiving thread does not terminate, even if thetime receiving
thread does. TheTicker, ChoiceTicker, andParTicker are equivalent in
a context where actora receives onlytime messages from the environment.
For this purpose we again use the restriction operator to restrict interactions
to relevant paths. LetMPtime = {a / time@ c c ∈ A andc 6= a}. Thus
the interactions of〈ChoiceTicker(a)〉a

∅
� MPtime are those in which only

time messages are received from the environment.

Theorem 3.5:
〈ChoiceTicker(a)〉a

∅
� MPtime

i
'

〈ParTicker(a)〉a
∅

� MPtime

i
'

〈Ticker(a)〉a
∅
.

Note that〈Ticker(a)〉a
∅

� MPtime

i
' 〈Ticker(a)〉a

∅
, sinceTicker(a)

does not accepttick messages. These interaction equivalence relations are
established in Section 5.2 below.

3.3. ASSERTINGPROPERTIES OFSPECIFICATIONS

DIAGRAMMATICALLY

Safety and liveness properties can be asserted directly in theSD language. We
present three different techniques for asserting safety and liveness. The first
method is based on interaction refinement. The second is based on diagram-
matically defining an environment which requires the specification to have the

hosc.tex; 14/10/2002; 10:47; p.20

Specification Diagrams for Actor Systems 21

proper behavior. The third method is by directly decoratingthe specification
with logical assertions.

The underlying idea of the first method is that a top-levelSD can be
thought of as defining a predicate on interaction paths (suchas a liveness con-
dition). The assertion that all behaviors of one top-level diagram〈D′〉ρχ have

the property defined by another〈D〉ρχ is then just stating that〈D′〉ρχ
i
⊆ 〈D〉ρχ.

An example of this method was in fact given earlier: the property that all
time messages sent to theTicker will receive a reply was expressed by the

LiveTicker specification, and the statement〈Ticker(a)〉a
∅

i
⊆ 〈LiveTicker(a)〉a

∅

asserts theTicker has such a property.LiveTicker actually states a stronger
property than liveness – it asserts a bijection between receives and sends. It
is fairly easy to show directly that theTicker has the liveness property; but,
this technique will also work for more complex behaviors.

A second and perhaps more convincing way to assert liveness is by speci-
fying an environment which requires liveness. For theTicker, the environ-
ment should assert that alltime requests are handled. Theassert pred-
icate is used for this purpose (more precisely thefail macro, defined as
assert(false)) in the followingLiveTickerEnvt:

LiveTickerEnvt(a) =

{ [fresh(c); send(a/time @ c); (receive(c/x)⊕ (fail; eod))]0...∞ }

Failure arises only when there is atime request that does not get answered
– thereceive choice is never possible and so failure is the only possibility.
If failure were chosen when there was in fact a reply to be received, that path
would be unfair because a message was never received. Theeod is needed in
the failure branch of the choice to ensure that if failure happens it is the end of
the computation. Otherwise the failure branch could be taken randomly and
pending messages could be received later. Asserting

OK(〈Ticker(a) | LiveTickerEnvt(a)〉∅
∅
)

says that there are no paths of this combined system which contain afail
event; see Definition 4.12 in the next section for the formal definition of
OK(·). Although this is an assertion about the possible computation paths, it
implies the desired responsiveness assertion.LiveTickerEnvt is an example
of a general form of diagram that can be used to specify responsiveness to
requests and to reduce the work of establishing such a property to reasoning
directly about possible computations.

The third manner in which properties may be diagrammatically asserted
is that safety properties may be directly asserted in the specification itself via
assert decorations. An example of a specification decorated with a safety
assertion isSafeTicker(a) (shown in Figure 8), a ticker which asserts succes-
sive outputs are non-decreasing.

hosc.tex; 14/10/2002; 10:47; p.21

22 S. F. Smith, C. L. Talcott

0..ω

SafeTicker(a) =

a time@c

∇

∇

[0..∞

pick(count ∈ Nat)

 pick(prevcount = 0)

[

[

[

count := count + 1

c reply(count)

∇

∇

{

{

assert prevcount <= count
prevcount := count

MonotoneTicker(a) =

a time@c

∇

∇

[0..∞

pick(count ∈ Nat)

pick(prevcount = 0)

[
c reply(count)

∇

∇
{

{

pick(count s.t. prevcount <= count)

prevcount := count

Figure 8. Examples of expressing assertions via diagrams: the Monotone and Safe Ticker
specifications

SafeTicker(a) =

{ pick(count ∈ Nat); pick(prevcount = 0);

[[receive(a / time@ c); send(c / reply(count));

assert(prevcount ≤ count); prevcount := count]0...ω;

count := count + 1]0...∞ }

The safety assertion forSafeTicker

OK(〈SafeTicker(a)〉a∅).

says that the sequence of values ofcount sent in replies is non-decreasing.
We can combine this with method 1 to assert a corresponding property for
Ticker

〈Ticker(a)〉a∅
i
⊆ 〈SafeTicker(a)〉a∅

In fact

〈Ticker(a)〉a∅
i
' 〈SafeTicker(a)〉a∅

This follows from a general result that anSDcan be decorated with new dia-
gram variables, assignments to these variables, and assertions without chang-
ing the interaction path semantics.

Safety assertions can also be expressed directly combiningthe use of addi-
tional diagram variables and the diagram as predicate interpretation (method
1). As an example consider theMonotoneTicker specification, also shown
in Figure 8:

MonotoneTicker(a) =

hosc.tex; 14/10/2002; 10:47; p.22

Specification Diagrams for Actor Systems 23

{ pick(count ∈ Nat); pick(prevcount = count);

[receive(a / time@ c); send(c / count);

pick(count s.t. prevcount ≤ count); prevcount := count]0...∞ }

and the assertion

〈Ticker(a)〉a∅
i
⊆ 〈MonotoneTicker(a)〉a∅

which analogously toSafeTicker is asserting thattime replies are monotone.
This monotonicity condition could also have been asserted by an environment
in the manner ofLiveTickerEnvt above. Some properties may not be easy
to assert diagrammatically, but many common forms of assertion can be nat-
urally expressed in this manner. Although the language is not trivial to learn,
we believe for practitioners its operational basis and graphical syntax will
make it easier to learn than e.g. temporal logic, and thus encourage increased
use of formal methods. Decision procedures and formal proofsystems exist
for many temporal logics. Tools do need to be be developed forchecking
SD properties in restricted but common cases, or for automatically inserting
runtime checks when an assertion can not be established by the tools at hand.
Such tools are an important topic for future work.

4. Semantics of Diagrams

In this section we study the semantics of specification diagrams. We first de-
fine an operational semantics, then use this to determine theset of interaction
paths[[〈D〉ρχ]] defining the behavior of top-level diagrams〈D〉ρχ.

The operational semantics of a top-levelSD is the set of allowed com-
putation paths described by the diagram. A computation pathis an infinite
sequence of internal steps interleaved with interactions with the environment.
Internal steps traverse the diagram, modifying the diagramstate, sending and
receiving messages using a local message pool, forking new threads, creat-
ing new names, evaluating constraints,etc. Interactions with the environment
allow messages to receptionists to come into the system and messages to ex-
ternal actors to be emitted from the system. Allowed computations must obey
certain constraints on message delivery and give fair treatment to independent
threads of activity. A more abstract (denotational) semantics, the interaction
path semanticsis derived from the allowed computation paths semantics by
observing only the interactions with the environment.

The computation paths of a component are given by a labelled transition
relation on configurations derived from local reaction rules. A configuration
represents a snapshot of an executing component. The transition labels cor-
responding to local reaction rules give us an operational view of the internal

hosc.tex; 14/10/2002; 10:47; p.23

24 S. F. Smith, C. L. Talcott

workings of a component. They are useful for defining notionsof fairness and
for reasoning about syntactic transformations. Interaction semantics hides
these internal labels, allowing only the interactions withthe environment to be
observed. In fact, what we will define is an actor theory [40, 42] semantics for
SD’s. Thus we shall call the transition system thespecification diagram actor
theory. We will fill in enough detail that this paper can be read independently
of the above references.

4.1. PRELIMINARIES

We begin with some mathematical preliminaries. To simplifycomputation
paths we consider diagram expressionsD; skip, skip;D andD to denote
the same diagram. This is consistent with the graphical form, since sequential
composition of a diagram with a straight line does not changethe graph.
Also, we will equateskip | skip andskip. To define the local rules, we
use the approach of [19] and factor a (runtime) diagramD into a redexDrdx

and reduction contextR such thatD = R[Drdx] identifying Drdx as the
next redex to be reduced. Notation is also needed for lookingup, modifying,
and extending variable environments. The concepts of reduction context and
environment are in fact intertwined: environments are local to particular sub-
diagrams (so e.g. parallel threads may have differing environments) and so
are spread around the reduction context. As discussed in section 2, these
local environments are finite functionsγ ∈ Xd

ω

→ U which hold the current
state of diagram variablesXd. Extension/updating,γ0; γ1, is defined as usual.
γ0; γ1 is the finite functionγ such thatDom(γ) = Dom(γ0) ∪Dom(γ1) and
for x ∈ Dom(γ),

γ(x) = if x ∈ Dom(γ1) then γ1(x) else γ0(x).

γ{x 7→ u} abbreviatesγ; {x 7→ u}.
We extend the language syntax to include syntax for binding variables in-

side an executing diagram:{|γ : D|} indicates a lexical scoping construct{D}
under which execution is actively occurring, with current local environment
γ.

The grammar of reduction contexts is

R = • +

R | D +

D | R +

R;D +

{|γ : R|}

• is called a hole, and is a place holder for a redex. Each reduction con-
text has a unique occurrence of• andR[D] denotes the act of replacing

hosc.tex; 14/10/2002; 10:47; p.24

Specification Diagrams for Actor Systems 25

that occurrence inR with diagramD. Note that, unlike the case for tradi-
tional sequential languages, the decomposition of a diagram is not necessarily
unique, since a parallel construct typically has two decompositions, allowing
the redex to be chosen from either part.

Notation is next defined for manipulation of the environmentembedded
in a reduction context. The basic operations needed includeR@ x to look up
the value ofx in the environments ofR, andR{x 7→ u} to modify the value
of an already-declared variablex. ε(R) extracts the environment implicit in
R.

Definition 4.1 (ε(R),R@ x, R{x 7→ u}):

ε(•) = ∅̄ the empty finite function

ε(R | D) = ε(D | R) = ε(R;D) = ε(R)

ε({|γ : R|}) = γ; ε(R)

R@ x = ε(R)(x) if x ∈ Dom(ε(R))

•{x 7→ u} = •

(R | D){x 7→ u} = (D | R){x 7→ u} = (R;D){x 7→ u} = R{x 7→ u}

({|γ : R|}){x 7→ u}

= if x ∈ Dom(ε(R)) then R{x 7→ u} else {|γ{x 7→ u} : R|}

We use the usual convention for multiple assignment: ifx is a list of
distinct diagram variables andu is a list of values of the same length, then
{x 7→ u} is the environment mapping each variable to its corresponding
value (order of assignment does not matter here).

The value of an expressionud occurring in a redex situated in a reduc-
tion contextR is obtained by applying the expression to the environment
associated withR: ud(ε(R)).

We want to ensure that the actor acquaintance laws are obeyed: an actor
can only know the name of another actor if it was told that nameat creation
time (hence the creator must have known the name) or if it received the
name in a message, or if it created the actor with that name. Todetermine
the actor names occurring in messages or other values, we assume given
an acquaintance functionacq : U ∪ Ud → Pω(A) and lift this function
homomorphically to environments and diagrams, using the fact that state and
recursion variables have no acquaintances. We require thatevaluation not
generate any new acquaintances:acq(ud(γ)) ⊆ acq(ud) ∪ acq(γ).

hosc.tex; 14/10/2002; 10:47; p.25

26 S. F. Smith, C. L. Talcott

4.2. OPERATIONAL AND INTERACTION SEMANTICS

Now we define the specification diagram actor theorySDTh, that is, the tran-
sition system and the admissibility requirements that determine the allowed
computation paths of a top level diagram. The states of the transition system
are calledconfigurations. A configuration has an interface and an internal
part. The internal part contains the execution state of the system and the pool
(multiset) of pending message packets. The transition rules are derived from
local reaction rules by lifting them to configurations and adding rules for
interaction with the environment. We first define the execution states, and
local reaction rules. Then we define configurations, the transition relation on
configurations, and the admissible computation paths.

Definition 4.2 (SDTh states and reaction rules):The execution states of
SDTh are diagrams in the extended syntax. The labelled reaction rules for
SDTh are given in Figure 9. The left-hand side of each rule has the form
R[Drdx] whereR is a reduction context andDrdx is theredex. In thesend and
receive rules we use the convention that messages received appear above
the arrow and messages send appear below the arrow.

Definition 4.3 (Configurations): A configuration has the formK = I ρ
χ

where(ρ, χ) is the interface andI is the interior. An interior has the form
I = D · µ whereD is a diagram execution state as above, andµ is a multiset
of message packets, and we defineI · µ′ to beD · µ · µ′ if I = D · µ. Thus,
expanding definitions,K = 〈 D · µ 〉 ρ

χ.

The computation paths of a configuration are given by a labelled transi-

tion relation with elements of the formK
tl
−→ K ′. The transition labeltl is

either an internal label, an input label, an output label, orthe idle label,idle.
Theidle label indicates absence of action, either because no rules apply, or
simply to allow “time” to pass. An internal label has the forml(µr) wherel

is a rule label, andµr is the sent message packet, if any. An input label has
the formin(a /M), indicating a message is arriving from the environment.
An output label has the formout(a / M) indicating a message is being
transmitted to the environment.1

Definition 4.4 (Transition rules and Computation Paths): The transition
rules for configurations are the following.

(r) 〈 D0 · µr · µ 〉 ρ
χ

l(µr)
−−−−→ 〈 D1 · µs · µ 〉 ρ

χ

if l : D0
µr

−→
µs

D1 is a diagram rule, and

1 To simplify the presentation we have suppressed bookkeeping information in execution
states and transition labels which are used to avoid misusesof actor names and to make precise
the conditions for admisability.

hosc.tex; 14/10/2002; 10:47; p.26

Specification Diagrams for Actor Systems 27

choose(l): R[Dl ⊕Dr] −−→ R[Dl] similarly for choose(r)

fork: R[fork(D)] −−→ (R[skip] | {|ε(R) : D|})

receive: R[receive(ad /Md)]
mp
−−→ R′[skip]

if x are the diagram variables occurring inMd,

u are values such thatmp = ad(ε(R)) /Md({x 7→ u}),

andR′ = R({x 7→ u})

send: R[send(ad /Md)] −−→
mp

R[skip]

wheremp = ad(ε(R)) /Md(ε(R))

pick: R[pick(x)] −−→ (R{x 7→ u})[skip] if acq(u) ⊆ acq(R)

fresh(a): R[fresh(x)] −−→ (R{x 7→ a})[skip] if a 6∈ acq(R)

assert(b): R[assert(φ)] −−→ R[skip] if b = φ(ε(R)) ∈ Bool

constrain: R[constrain(φ)] −−→ R[skip]

if φ(ε(R)) = true

R[constrain(φ)] −−→ R[receive(a / nil)]

if φ(ε(R)) 6= true anda 6∈ acq(R)

assign: R[x := ψ] −−→ R′[skip]

if R′ = R{x 7→ ψ(ε(R))}

rec: R[recX.D] −−→ R[D[(recX.D)/X]]

scope-in: R[{x1, . . . , xn : D}] −−→ R[{|γ : D|}]

Dom(γ) = {x1, . . . , xn} and

acq(γ(xi)) ⊆ acq(R) ∪ acq(D) for 1 ≤ i ≤ n

scope-out: R[{|γ : skip|}] −−→ R[skip]

Figure 9. Reaction Rules for Diagrams

any actor names generated by the diagram rule are fresh

(in) I ρ
χ

in(a/M)
−−−−−→ 〈 (I · a /M) 〉 ρ

χ∪(acq(M)−ρ)

if a ∈ ρ and acq(M) ∩ (acq(I) − χ) ⊆ ρ

(out) 〈 (I · a /M) 〉 ρ
χ

out(a/M)
−−−−−−→ I ρ∪(acq(M)−χ)

χ if a ∈ χ

(idle) I ρ
χ

idle
−−−→ I ρ

χ

hosc.tex; 14/10/2002; 10:47; p.27

28 S. F. Smith, C. L. Talcott

Computation pathsπ ∈ P are infinite sequences of the form

π = [〈Di · µi〉
ρi

χi

tli−→ 〈Di+1 · µi+1〉
ρi+i

χi+1
i ∈ Nat]

where each element is a transition rule instance. Note that considering only
infinite sequences is not a restriction, since a computationthat terminates
after finitely many steps can be made infinite by use of theidle transition.

Example 4.5 (An Example Computation): We now illustrate the rules via
an example computation. Recall the function composer diagramFC of Sec-
tion 3. We will show one complete pass through the loop. For this purpose we
define additional diagrams that correspond to positions in the unfolding of
the initial state diagram using the environmentγ to specify currently bound
variables. Letγ contain the bindings{x 7→ v, y 7→ w, z 7→ u, xc 7→ c, xf 7→
cf , xg 7→ cg} and we define

FC0(a, af , ag, γ) = {| γ : rec(X)

([receive(a / compute(x)); fresh(xf); send(af / compute(x) @ xf);

receive(xf / reply(y)); fresh(xg); send(ag / compute(y) @ xg);

receive(xg / reply(z)); send(xc / reply(z));X]

⊕

skip |})

(recall[D]0...∞ abbreviatesrecX.((D;X) ⊕ skip))

FC1(a, af , ag, γ) =

{| γ : receive(xf / reply(y)); fresh(xg); send(ag / compute(y)@xg);

receive(xg / reply(z)); send(xc / reply(z)); FC0−(a, af , ag) |}

FC2(a, af , ag, γ) =

{| γ : receive(xg / reply(z)); send(xc / reply(z)); FC0−(a, af , ag) |}

whereFC0− is FC0 with the outermost scoping construct,{|γ : . . . |}, removed

Using the reaction rules we obtain the following example computation path
in which there is a singlecompute request from the environment andγ0

contains some (arbitrary) initial bindings for the diagramvariables.

〈FC(a, af , ag)〉aaf ,ag

scope-in
−−−−−→

〈 FC0(a, af , ag , γ0) 〉
a
af ,ag

in(a/compute(v)@c)
−−−−−−−−−−−−→

hosc.tex; 14/10/2002; 10:47; p.28

Specification Diagrams for Actor Systems 29

〈 FC0(a, af , ag , γ0) · a / compute(v) @ c 〉 a
af ,ag,c

rec;choose(l);receive(a/compute(v)@c);fresh(cf);send(af /compute(v)@cf)
−−→

〈 FC1(a, af , ag , γ1) · af / compute(v)@cf 〉 a
af ,ag ,c

whereγ1 = γ0{x 7→ v, xc 7→ c, xf 7→ cf }

out(af /compute(v)@cf)
−−−−−−−−−−−−−−→

in(cf /reply(w))
−−−−−−−−−−→

〈 FC1(a, af , ag , γ1) · cf / reply(w) 〉 a,cf
af ,ag ,c

receive(cf /reply(w));fresh(cf);send(ag/compute(w)@cg)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

〈 FC2(a, af , ag , γ2) · ag / compute(w)@cg 〉 a,cf
af ,ag ,c

whereγ2 = γ1{y 7→ w, xg 7→ cg}

out(ag/compute(w)@cg)
−−−−−−−−−−−−−−−→

in(cg/reply(u))
−−−−−−−−−−→

〈 FC2(a, af , ag , γ2) · cg / reply(u) 〉
a,cg ,cf
af ,ag ,c

receive(cg/reply(u));send(c/reply(u))
−−−−−−−−−−−−−−−−−−−−−−−−→

〈 FC0(a, af , ag , γ2) · c / reply(u) 〉
a,cf ,cg
af ,ag ,c

out(c/reply(u))
−−−−−−−−−−→

〈 FC0(a, af , ag , γ2) 〉
a,cf ,cg
af ,ag ,c

Given the definitions of the states, reaction rules, and certain additional
admissibility information, the actor theory framework tells us which compu-
tation paths are admissible. Rather than introduce the general definition, we
state a lemma that gives an equivalent characterization of admissible compu-
tation paths for theSDactor theory. To ensure that the acquaintance laws are
not violated, freshness constraints on actor names must be interpreted in terms
of the computation path up to the point of rule application. This is because
some names that have been used may not occur in the current configuration.
In addition, two fairness properties are needed, one for redexes and one for
messages. The basic idea is that a redex occurring in a reduction context hole
is considered enabled, and if the computation path is admissible an enabled
redex occurrence must eventually be reduced. Furthermore every message
that appears in the internal message set (generated by an internal send or an
input) must be received.

Definition 4.6 (Fairness properties):
Redex-fairness:a path,π, is redex-fair if for all configurations of the form
〈Di · µi〉

ρi

χi
arising inπ, if Di = R[Drdx] for someR,Drdx, then there is

hosc.tex; 14/10/2002; 10:47; p.29

30 S. F. Smith, C. L. Talcott

a later transition in which the redex reduced in this transition is the same
subterm occurrenceDrdx.

Message-fairness:a path,π, is message-fairif for all configurations of
the form〈Di · µi〉

ρi

χi
arising inπ, each packetmp ∈ µi must be delivered in

some later transition, either by being output (if the targetis external) or by
application of thereceive (if the target is internal).

Lemma 4.7 (SD admissibility): The admissible paths ofSDTh are the com-
putation paths which are bothredex-fair and message-fair. We let A(K)
denote the admissible paths with initial configurationK .

Definition 4.8 (Interaction Path): An interaction path consists of an in-
terface and a sequence (finite or infinite) of interactionsio ∈ (in(MP) ∪
out(MP)) satisfying the interaction path laws. There are two main laws. The
first says that inputs must be initial receptionists or actors that have become
receptionists by having their name exported in previous outputs. The second
says that outputs must be to actors that are initially in the external set or whose
names have been imported in previous inputs. For technical convenience we
allow gaps in the sequence (i.e. the sequence is a partial function fromNat

to interactions allowing for times that no interaction occurs) and sometimes
represent the partial function as a set of pairs(i, io) for i in the function
domain.

The interaction path semantics of a configuration is the set of interaction
paths obtained by hiding the internal details of admissiblecomputation paths.
Formally we define a functioncp2ip mapping computation paths to inter-
action paths:cp2ip(π) has the same interface as the interface of the initial
configuration ofπ, its interaction sequence is given by the set of pairs of the
form (i, io) such that theith transition has an interaction label,io.

Definition 4.9 (cp2ip(π)): For a computationπ with initial configuration
I0

ρ0
χ0

, the associated interaction path is defined by

cp2ip(π) = ερ0

χ0
where

ε = {(i, io) i ∈ Nat ∧ π(i) = Ki
io
−→ Ki+1 ∧ io ∈ (in(MP)∪out(MP))}

The interaction semantics of a configuration[[K]] is the set of interaction
paths associated with admissible computation paths ofK .

Definition 4.10 ([[K]]):

[[K]] = {ip (∃π ∈ A(K))ip = cp2ip(π)}

Interaction sequences should be thought of as convenient representations
of totally ordered multisets of I/O interactions. Two representations of the
same totally ordered multiset can be considered equivalent. Because of the
presence ofidle transitions, the set of interaction sequences for a configura-

hosc.tex; 14/10/2002; 10:47; p.30

Specification Diagrams for Actor Systems 31

tion is closed under this equivalence and representation details can be ignored
for most purposes.

Definition 4.11 ([[〈D〉ρχ]]): To define the interaction path semantics of a top-
level diagram,[[〈D〉ρχ]], all we need to do is define the corresponding initial
configuration:

[[〈D〉ρχ]] = [[〈{|D|} · ∅〉 ρ
χ]]

Notice that by our implicit scoping and declaration convention (see sec-
tion 2), all variables appearing in a top-level diagram are bound during ex-
ecution. Extending the scope of the above correspondence, we adopt the
convention that whenever a top-level diagram,〈D〉ρχ, occurs in a context
where a configuration is expected it denotes the corresponding configuration,
〈{|D|} · ∅〉 ρ

χ.
Now we can give the definition of the test for failed assertions.

Definition 4.12: A diagram is assertion-valid,OK(〈D〉ρχ), iff there is noπ ∈
A(〈D〉ρχ) that contains anassert(false)-labelled transition.

4.3. COMMENTARY ON THE SPECIFICATION DIAGRAM SEMANTICS

The use of local reaction rules to define a labelled transition system is fairly
common. TheSD rules correspond to a language with syntax having some
features of process algebras such as CSP or theπ-calculus, but with asyn-
chronous message passing and name handling modeled on the actor approach.
Also, the syntax is not intended to define an algebra of processes, but to be a
notation for specifying interaction patterns. In the following we discuss some
of the more subtle and perhaps nonstandard aspects of the rules.

Thereceive rule contains implicit pattern-matching. Diagram variables
in Md are considered pattern variables, and are matched against the packet
mp. It is important to note that the receiverad is not considered part of the
pattern, rather it is evaluated in the before receipt environment. Thus only
those actors considered to be internal to the system are ableto receive mes-
sages and it is not possible to receive a message destined foran arbitrary actor.
acq(ū) ⊆ acq(mp) holds by the pattern match thus insuring that the actor
locality laws are obeyed by thereceive transition. Thepick rule assigns
to the variablex an arbitrary value based on the names of actors currently
known. fresh corresponds to actor creation, assigning an actor name to
x which is not currently known.assign updates the value assigned tox,
the new value being the valueψ in the current environment, if this value
is defined. (By redex-fairness a computation path containing an undefined
(stuck) assignment redex is not admissible.) All of these rules operate on the
lexically closest binding of the effected variable. Note that by our variable
declaration convention, these variables will be bound in the reduction con-

hosc.tex; 14/10/2002; 10:47; p.31

32 S. F. Smith, C. L. Talcott

text environment, although the binding may be some arbitrarily chosen initial
value.

Thescope-in rule allocates a new local environment to store the values
of the newly declared variables and initially assigns them arbitrarily chosen
values.

The intuitive semantics ofconstrain(φ) is that the computation contin-
ues if the constraint holds and otherwise the resulting computation path is not
allowed. The second clause ofconstrain causes the computation path to be
inadmissible by requiring a receive by a freshly created actor name that can
never be sent a message. This is a technical trick to express inadmissibility
locally in terms of message passing requirements, rather than add another
parameter to the notion of admissibility. An alternative semantics would be
to simply not reduce the redex if the constraint expression does not evaluate
to true. In this case it might later become true and reduce, or it might remain
stuck, and be inadmissible by the redex fairness requirement. The assert
rule, on the other hand, reduces if the predicate expressionis defined. In this
case it has no effect other than the label issued, which if ever false means the
diagram viewed as a proposition is false (see Definition 4.12). If the predicate
remains undefined then the redex is stuck and, as for theconstrain case, the
computation path is not admissible by redex fairness.

4.3.1. Admissibility
One unusual aspect of the semantics lies in the details of theadmissibility
requirement. TheSD admissibility requirement rules out any computation
path which contains a redex that is stuck,i.e., does not reduce.

We use the fact that admissibility rules out paths with falseconstraints in
the definition of theif-then-else macro. The macro expansion of

if φ thenD1 elseD2

illustrates this: in the expansion

(constrain(φ);D1) ⊕ (constrain(¬φ);D2),

the choice could pick the wrong branch, for instance taking the left branch
when¬φ held, but the constraint would fail, and the path would not progress
and thus be ruled out.

The redex admissibility requirement is significantly stronger than standard
fairness requirements, and makes the computation system unrealizable. Even
without requiring admissibility the computation system isunrealizable be-
cause the value of expressions need not be computable. However, restricting
to the case where expressions are computable, some diagramsstill may not

hosc.tex; 14/10/2002; 10:47; p.32

Specification Diagrams for Actor Systems 33

be realized by any actor computation. One example is:

pick(nomorezeros = false);
[(receive(a / 0); constrain(¬nomorezeros);
nomorezeros := true; send(c / 1))
⊕
(receive(a / x); constrain(¬(x = 0 ∧ nomorezeros));
send(c / 0))]0..∞

This diagram replies 0 to all inputs, except thelast 0 inputmayget a 1 reply.
No realizable system can foresee the future to know when the last input
of a particular form has arrived. The source of the uncomputability here is
constrain, which for obvious reasons is called a “miraculous” commandin
the Dijkstra language.

With respect to messages, admissibility is designed both torule out paths
with buffered messages inµ not received, and to rule out paths in which there
is areceive redex for which a matching message is never input. A simple
consequence of the latter is thatSDs can express requirements that certain
messages must be input. A simple consequence of the former isthat message
packet restriction can be expressed implicitly inSD’s, simply by having no
receives for some packets.

Lemma 4.13: Let V be a subset ofMsg and letD be a diagram in which
no occurrence ofreceive(ad /Md) could possibly match a message of the
form a / v for v ∈ V (for anya ∈ A). Then

[[〈D〉ρχ]] = [[〈D〉ρχ � A / V]]

Proof. We only need to show the⊆ direction because the other direction
holds by definition. For this letip ∈ [[〈D〉ρχ]] and letπ ∈ A(〈D〉ρχ) such that
cp2ip(π) = ip. Supposeπ(i) has labelin(a/M) for somei and somea/M .
Then message fairness, the message must be received, and hence there must
be an occurrencereceive(ad / Md) in D that matchesa / M and hence
M 6∈ V .

4.3.2. Relation to the Actor Model
Specification diagrams were designed as a notation for describing sets of
interaction paths. In particular, we want our specificationnotation to be able
to express both high-level coordination patterns, and assumptions about the
environment, as well as properties of a components behaviorgiven such as-
sumptions. Thus theSD semantics differs from the semantics of traditional
actor programming languages in a number of ways. One difference has to
do with synchronization. In anSD computation more that one actor can
participate in a given thread of activity and a single actor can participate in

hosc.tex; 14/10/2002; 10:47; p.33

34 S. F. Smith, C. L. Talcott

multiple threads of activity. The former allowsSD’s to express some forms
of synchronization constraints. As shown in [20] such constraints can often
be expressed by more complex patterns of message passing. The ability of
a single actor to participate in multiple threads is in fact aproperty of the
original actor model [25] in which actors wereunserializedand could work
on multiple tasks simultaneously.

A second difference is a consequence of the redex-admissibility require-
ment applied toreceive redexes. A basic tenet of the actor model and of
open systems in general is that a system component cannot control the en-
vironment in which it lives. In particular it cannotrequire that a particular
message be sent. Thus an actor waiting to receive a message, will patiently
wait, possibly forever. Furthermore, an actor system can not refuse to take a
message addressed to a receptionist. In general there is no obligation to reply,
and the sender is not forced to block waiting for a reply, although it may
choose to do so. These distinctions are about language and expressiveness
and not about the underlying computation model.

4.3.3. Choice
The choice operator⊕ is just a coin flip, analogous to the internal form of
choice from process algebra. However, in the context of the manner in which
admissibility is defined, this internal choice operator canmodel the external
forms of choice found in process algebra. For instance, in

receive(a / wow);D0 ⊕ receive(a / wee);D1

even though the choice is a coin flip, if thewow choice was taken and the
only input waswee, thereceive(a / wow) will starve and the computation
ruled unfair. Thus it is as if that choice never happened, andthe effect is the
same as if this were an external choice. The specification diagram analog of
external choice is the constraints on the environment due tothe admissibility
conditions that allow a specification diagram to determine messages that are
acceptable and messages that are prevented. Thus external choice is more of
an admissibility issue. As noted above, in the underlying actor model, external
choice is not meaningful, since an actor system itself cannot so constrain the
environment.

5. Proving Specifications Correspond

In this section we give two examples to illustrate reasoningabout diagrams. In
the first example we establish interaction equivalence of three ticker specifi-
cation diagrams. In the second example two function composer specifications
are related.

hosc.tex; 14/10/2002; 10:47; p.34

Specification Diagrams for Actor Systems 35

5.1. TECHNIQUES FORREASONING ABOUT INTERACTION

EQUIVALENCE

We begin by introducing two general techniques useful for establishing prop-
erties based on interaction semantics.

Recall that two top-level diagrams are interaction equivalent just if they
have the same interaction semantics.

〈D0〉
ρ
χ

i
' 〈D1〉

ρ
χ iff [[〈D0〉

ρ
χ]] = [[〈D1〉

ρ
χ]]

Thus to establish interaction equivalence, we must show that for each admis-
sible computation pathπ0 of 〈D0〉

ρ
χ there is an admissible computation path

π1 of 〈D1〉
ρ
χ with the same associated interaction path, and conversely.

The first proof technique is to simplify the description of the set of interac-
tion paths for a given top-level diagram by restricting attention to computation
paths given by abig-step semantics, thus reducing the amount of interleav-
ing to be considered. The second technique is a method for giving local
descriptions of the correspondence between computation paths.

5.1.1. Big-step Semantics
The big-step technique can be applied to arbitrary diagrams. However, to
simplify the discussion, we restrict attention to diagramswith staticstructure,
that istail-recursivediagrams defined without the use of thefork construct.
A diagram is tail-recursive if every recursion variable occurrence is such
that in any execution, it will be the last redex in the scope ofthe binding
recursion operator. Thus there is no duplication of diagramtext caused by
recursion – for example two threads expanding to four by parallel recursive
calls. Also when the recursion variable redex is reached there is no remaining
context inside the calling scope. For example, the diagram macros defining
the various loop forms are tail-recursive.

A computation is in big-step form relative to a selected subset of diagram
states if it consists of input/output transitions interleaved with sequences of
internal transitions connecting the selected states that can be considered as
single steps.

TheFC computation given in example 4.5 is in big-step form relative to
the four families of diagram statesFC, FC0, FC1, FC2. For example, the
transition sequence with the label

rec; choose(l); receive(a / compute(v)@c); fresh;

send(af / compute(v)@cf)

is a big-step connecting anFC0 state to anFC1 state.
We now make precise the notions of big-step and big-step semantics. In-

tuitively a big-step is a single-threaded sequence of internal transitions that

hosc.tex; 14/10/2002; 10:47; p.35

36 S. F. Smith, C. L. Talcott

are independent of any steps that could be executed in parallel. Thus any
interleaving of the parallel execution steps can always be permuted so that the
steps of the big-step sequence are adjacent, without changing the observed
interactions or the fairness properties. Execution of statements without any
observable effect can always be included in a big step. For example,choose,
rec, and reads or writes of state variables local to the thread may appear in
big steps. Furthermore, some effects may be performed in a big step. A single
variable read/write or message receive/send is fine if all other steps are purely
local, and a single receive followed by one or more sends is also unaffected
by any interleaving. A write followed by a read does not meet the big-step
criteria, because an interleaving with a different write could cause the value
of the read to change. Formally, we consider three classes ofeffect: read
effect, unbuffered write effect(observable immediately), andbuffered write
effect(observable sometime in the future).

Definition 5.1 (Redex effects):The effects of an atomic redex are classified
in the context of step sequences with states of the formR[Ri[Di]]. An occur-
rence of a variable inDi is said to belocal if it is bound inRi[Di]. The effects
of the atomic redexes are as follows (note a single statementcould have both
read and write effects):

read effect receive(ad /Md), x := . . . y . . ., constrain(. . . y . . .),
send(. . . y . . .) for y non-local

unbuffered write effect x := ψ, pick(x), fresh(x), receive(ad/. . . x . . .)
for x non-local

buffered write effect send(ad /Md)

A step iseffect-freeif it has no effect (read, unbuffered write or buffered
write).

In the following, we assume diagrams have been placed in a form where
eachrecX.D uses a unique recursion variableX, in addition to our assump-
tion of fork-freeness and tail-recursion.

Definition 5.2 (Big step): A big stepis a rule sequence the form

[li : R[Ri[Di]]
(µr)i

−−−→
(µs)i

R[[Ri+1[Di+1]] 0 ≤ i < n]

such that

(1) for eachi,Di is a redex andRi is defined without use of the| clauses;

(2) eachrec(X) label appears at most once inl1, . . . , ln, meaning each
recursion operator is unrolled at most once per big step;

hosc.tex; 14/10/2002; 10:47; p.36

Specification Diagrams for Actor Systems 37

(3) there is no receive by a freshly created actor; that is, there is no label
subsequence of the formfresh(x) . . . receive(x /Md)

and furthermore

(4) if there is a step with an unbuffered write effect, there may be no read
effects present in other steps;

(5) there is at most one step with a read effect;

(6) buffered write effects must not occur before any read or unbuffered
write effects.

In the above definition, (1) ensures that the rule sequence issingle threaded,
(2) guaranteeing finiteness of big steps connecting diagramstates, (3) is needed
because an actor can only receive a message after its name hasbeen exported,
and this entails an ordering that prevents permuting steps.Conditions (4-6)
ensure permutablility with parallel computations.

Definition 5.3 (Big-step semantics):A big-step semanticsfor a top-level
diagram is given by selecting a subset of the reachable diagram states such
that

(1) any sequence of rule applications starting in one of the selected states
reaches another selected state in finitely many steps, and

(2) the resulting sequence is a big-step.

The resulting semantics is the set of admissible computations generated by
using only input/output transistions and the big-step sequences viewed as
atomic transitions.

Lemma 5.4 (Big-step semantics is sound):Given a top-level diagram and
a subset of the reachable diagram states that defines a big-step semantics, for
every interaction path for the diagram there is a computation of the big-step
semantics that is mapped to this path bycp2ip.

Proof.This lemma is proved via aPermutation Lemmawhich establishes
that certain pairs of actions in different threads can be permuted. Big steps
are then formed by iteratively permuting actions thus transforming any ad-
missible computation to a big-step computation with the same associated
interaction path. Similar proofs are given in [3, 31].

Note that the full admissible computation semantics is alsoa big-step
semantics, obtained by selecting all possible diagram states.

For diagrams with static structure, computations can easily be visualized
by marking the active redex points (one for each active thread) and moving

hosc.tex; 14/10/2002; 10:47; p.37

38 S. F. Smith, C. L. Talcott

the marks around the diagram as the computation proceeds. A selection of
intermediate reachable states can be represented as a subset of the possible
active redex markings. The states will be parameterized by global diagram
parameters plus an environment mapping visible variables to current values.
In the function composer computation above the intermediate states are given
by marks at the diagram entry (FC), the point just before the receive by the
initial receptionista (FC0), the point just before the receive by the actor
bound tocf (FC1), and the point just before the receive by actor bound to
cg (FC2). One more mark is needed at the diagram exit to allow for the
possibility of termination after a finite number of iterations.

To select a subset of states that give rise to big-step computations for a
given diagramD we mark stopping points (redex occurrences) on the dia-
gram that correspond to intermediate states of interest in the computation, for
example points for which we want to express invariants or other properties of
the computation. This marking is further refined to a markingD̃ such that the
corresponding selected states define a big-step semantics.

5.1.2. Interaction Simulation
Given two specification diagram configurationsK0 and K1, they may be
shown interaction equivalent for inputsAmp by finding an interaction pre-
serving correspondence between their admissible computationsA(Kj � Amp).
By Lemma 5.4 we may assume thatK0 andK1 are configurations arising in
some big-step semantics and restrict attention to the admissible big-step com-
putations. Aninteraction simulationis a relation on (big-step) configurations
and enabled (big-step) transitions that provides a local means of defining such
a correspondence. The idea is to define a relation on (big-step) transitions, lift
this relation to admissible configurations, preserving input/output transitions,
and then show that admissibility is preserved.2

Definition 5.5 (Interaction simulation): Let Kj be the reachable configu-
rations in some big-step semantics forj < 2. A pre-interaction simulation
for inputs inAmp consists of a binary relation∼C onK0 × K1 together
with functionsΦj for j < 2 mapping enabled internal and idle transitions of
Kj to (possibly empty) sequences of big-steps starting fromK1−j such that
for each related pairK0 ∼C K1 the following conditions hold:

(1) K0 andK1 have the same interface and the same multiset of undeliv-
ered packets to external actors.

2 It would be desirable to define the local relation so that preserving admissibility is guaran-
teed, but to achieve this means both complicating the definition of local simulation and greatly
resticting the espressiveness of the simulation relation.Thus we have chosen to separate out
the prove of preservation of admissibility.

hosc.tex; 14/10/2002; 10:47; p.38

Specification Diagrams for Actor Systems 39

(2) if K0
tl
−→ K ′

0, with inputs inAmp, then there isK ′
1 such thatK ′

0 ∼C

K ′
1 andK1

Φ0(tl)
−−−−→ K ′

1, and dually with 0-1 interchanged (extendingΦ0

as the identity on i/o labels).

A pre-interaction simulation(∼C ,Φ0,Φ1) induces functions (also called
Φj) from computations forKj to computations forK1−j (in the chosen big-
step semantics) forK0 ∼C K1. This simulation is aninteraction simulation
if these functions preserve admissibility.

Lemma 5.6 (Isim): Let Kj be the reachable configurations in some big-step
semantics forj < 2 and let(∼C ,Φ0,Φ1) be an interaction simulation on
big-step computations of(K0,K1) with inputs restricted toAmp. If Kj ∈
Kj for j < 2, then

K0 ∼C K1 ⇒ (K0) � Amp
i
' (K1) � Amp

Proof. We need only show the interactions are preserved. This follows from
the fact that the transition functions extend as the identity on interaction
transitions.

5.2. TICKER EXAMPLE

In this section we prove the Ticker equivalence theorem 3.5:

〈ChoiceTicker(a)〉a∅ � MPtime

i
'

〈ParTicker(a)〉a∅ � MPtime

i
'

〈Ticker(a)〉a∅

where the parametera is the name of the ticker and

MPtime = A / time@ A.

We do this by first defining a big-step semantics for each of thetop-level dia-
grams. Proving equivalence ofChoiceTicker andParTicker is then a matter
of establishing an interaction simulation between computation paths of the
corresponding big-step semantics. Equivalence ofTicker andChoiceTicker
requires establishing a more complex correspondence. Local transformations
are not adequate for relatingTicker andChoiceTicker because theTicker
relies on the ability to discard paths when a wrong choice hasbeen made,
for example if a choice is made to accept twotime messages before the next
counter increment and only one moretime message arrives.

The diagramTicker(a) is given in Section 3.1.2 (Figure 3) and the di-
agrams forChoiceTicker(a) andParTicker(a) are given in Section 3.2.8

hosc.tex; 14/10/2002; 10:47; p.39

40 S. F. Smith, C. L. Talcott

(Figure 7). For the readers convenience, we recall the diagrams, in textual
form. Ticker(a) describes an actor that increments its counter after replying
to some finite number oftime requests.

Ticker(a) =

{pick(count ∈ Nat);

[[receive(a / time@ x); send(x / reply(count))]0...ω;

count := count + 1]0...∞ }

The other two describe actors that increment the counter upon receipt of (in-
ternally generated)tick messages.ChoiceTicker(a) non-deterministically
chooses between acceptingtime andtick messages.

ChoiceTicker(a) =

{ count : count := 0; send(a / tick);

[receive(a / tick); count := count + 1; send(a / tick)

⊕

receive(a / time@ x); send(a / reply(count))]0...∞;

receive(a / tick) }

while ParTicker(a) acceptstime andtick messages in parallel.

ParTicker(a) =

{ count : count := 0; send(a / tick);

[receive(a / tick); count := count + 1; send(a / tick)]∞

|

[receive(a / time@ x); send(a / reply(count))]0...∞ }

5.2.1. The Choice Ticker Big-step Semantics
We define a big-step semantics for theChoiceTicker(a) diagram by defining
a marking,ChoiceTickerM(a), of the diagram, and showing that this mark-
ing determines a big-step semantics.ChoiceTickerM(a) has three marks: the
diagram entry point, the entry to the loop, and the exit point. Corresponding
to the three marks there are three families of states parameterized by the
internal actor and the value of the diagram variable, where relevant:

− cT(a) — the diagram entry point with internal actora
(cT(a) = ChoiceTicker(a)),

− cTl(a, n) — the loop entry point withcount = n,

− End(a) — the exit point.

hosc.tex; 14/10/2002; 10:47; p.40

Specification Diagrams for Actor Systems 41

The set of rule sequences connecting these diagram states are:

(L0) cT(a) −−−−→
a/tick

cTl(a, 0)

(L1) cTl(a,n)
a/tick
−−−−→
a/tick

cTl(a,n + 1)

(L2) cTl(a,n)
a/time@c
−−−−−−−→
c/reply(n)

cTl(a,n)

(L3) cTl(a,n)
a/tick
−−−−→ End(a)

where

L0 = assign; send

L1 = rec(X); choose(l); choose(l); receive; assign; send

L2 = rec(X); choose(l); choose(r); receive; send

L3 = rec(X); choose(r); receive

Clearly each of these is big-step and thus we have a big-step semantics.

5.2.2. A Big-step Semantics for the Parallel Ticker
Defining a big-step semantics for the parallel ticker requires a little more care,
since this diagram has two threads of activity that share state. Let diagram
ParTickerM(a) beParTicker(a) with the following marks: the diagram en-
try point, the entry point to the loop on each parallel thread, the exit point
of the time thread, the point between the receive and send on thetime

thread, and the point between the send and the assign on thetick thread.
This marking leads to seven families of states the initial state, and six joint
states of the two threads.

− pT(a) = ParTicker(a) — the diagram entry point with internal actor
a.

− pTi,j(a, n, c) = {count = n : [PTli(a) | {x = c : PTrj(a)}]} — two
threaded states with internal actora, countn and customerc.

where the sub-diagramsPTli(a) andPTrj(a) for i ∈ {0, 1} andj ∈ {0, 1, e}
are intermediate diagrams for the two parallel branches, given by

PTl0(a) = rec(X)(receive(a/tick); count := count+1; send(a/tick); X)

PTl1(a) = count := count + 1; send(a / tick); PTl0(a)

PTr0(a) = rec(Y)(skip⊕[receive(a/time@x); send(x/reply(count)); Y])

PTr1(a) = send(x / reply(count)); PTr0(a)

hosc.tex; 14/10/2002; 10:47; p.41

42 S. F. Smith, C. L. Talcott

PTre(a) = skip

The possible rule sequences connecting these states are (omitting mention of
rules with no effect):

(L0) pT(a) −−−−→
a/tick

pT0,0(a, 0, nil)

(Ll0) pT0,j(a, n, c)
a/tick
−−−−→ pT1,j(a, n, c)

(Ll1) pT1,j(a, n, c) −−−−→
a/tick

pT0,j(a, n + 1, c)

(Lr0) pTi,0(a, n, c
′)

a/time@c
−−−−−−→ pTi,1(a, n, c)

(Lr1) pTi,1(a, n, c) −−−−−−−→
c/reply(n)

pTi,0(a, n, c)

(Lre) pTi,0(a, n, c) −−→ pTi,e(a, n, c)

It is easy to check (by filling in the hidden rule applications) that these states
and rule sequences determine a big-step semantics. The needfor marking
intermediate points on the two threads is due the the fact that one thread
readscount and the other writes it. Specifically, according to the big-step
definition,Lr0 andLr1 cannot be condensed into one big-step because there
can be at most one read effect in a canonical step, and the receive and the read
of the valuen are read effects in the two respective rules.

5.2.3. Choice Ticker—Parallel Ticker Equivalence
To prove the equivalence of the choice and parallel ticker diagrams, we define
an interaction simulation for the big-step semantics that relates the choice
and parallel ticker top-level diagrams restricted to time request inputs. The
relation ∼C on configurations is given by

(init) 〈 cT(a) · µ 〉 a
χ ∼C 〈 pT(a) · µ 〉 a

χ

(0,0) 〈 cTl(a, n) · µ 〉 a
χ ∼C 〈 pT0,0(a, n) · µ 〉 a

χ

(1,0) 〈 cTl(a, n) · a / tick · µ 〉 a
χ ∼C 〈 pT1,0(a, n) · µ 〉 a

χ

(0,1) 〈 cTl(a, n) · a / time@ c · µ 〉 a
χ ∼C 〈 pT0,1(a, n, c) · µ 〉 a

χ

(1,1) 〈 cTl(a, n) · a / tick · a / time@ c · µ 〉 a
χ ∼C 〈 pT1,1(a, n, c) · µ 〉 a

χ

(1,e) 〈 End(a) · µ 〉 a
χ ∼C 〈 pT1,e(a, n) · µ 〉 a

χ

(0,e) 〈 End(a) · µ 〉 a
χ ∼C 〈 pT0,e(a, n) · a / tick · µ 〉 a

χ

The transition functionΦc2p in the choice to parallel ticker direction maps
single cT steps to macro steps of pT as follows:

Φc2p(L0) = L0

hosc.tex; 14/10/2002; 10:47; p.42

Specification Diagrams for Actor Systems 43

Φc2p(L1) = Ll0;Ll1

Φc2p(L2) = Lr0;Lr1

Φc2p(L3) = Lre

Φc2p(idle) = Ll0;Ll1

The loop entry transitions correspond in an obvious way. Thereceive tran-
sition maps apply to the correspondence case (0,0) andidle transition map
applies to the correspondence case (0,e). These are the onlycases that arise
in the cT to pT direction. The non-trivial idle transition map is needed be-
cause the parallel ticker keeps on ticking forever while thechoice ticker stops
ticking if requests stop arriving.

The transition functionΦp2c in the parallel to choice ticker direction maps
the receive pT steps to idle steps of cT and the sends to receive/send cT steps
as follows:

(0) Φp2c(L0) = L0 for the correspondence case (init)

(l0) Φp2c(Ll0) = idle for the correspondence cases (0,0), (0,1) and (0,e).

(l1) Φp2c(Ll1) = L1 for the correspondence cases (1,0) and (1,1)

(r0) Φp2c(Lr0) = idle for the correspondence cases (0,0) and (1,0).

(r1) Φp2c(Lr1) = L2 for the correspondence cases (0,1) and (1,1).

(re) Φp2c(Lre) = L3 for the correspondence cases (0,0) and (1,0).

(l13) Φp2c(Ll1) = idle for the correspondence case (1,e)

To see that this satisfies the conditions for being anSD interaction simu-
lation we need to show that admissible paths are mapped to admissible paths
by the transition functions. Supposeπ is an admissible computation for the
choice ticker andπ′ = Φc2p(π). If π′ is not admissible then either there
is a message that is not delivered or an exposed redex that is not reduced.
In the message case, external messages and their outputs correspond so it
must be atick or time message that is not delivered. By definition of the
transition map and configuration correspondence there mustalso be such a
message undelivered inπ, contradicting admissibility ofπ. Similarly if there
is a redex exposed and not reduced it must be one of the parallel thread entry
points. Again by the correspondence this means that the loopentry point for
the choice ticker remains unreduced from some point which isnot possible.
Going the other direction, supposeπ′ is an admissible path for the parallel
ticker, π = Φp2c(π

′), and path’ is not admissible. Suppose atick or time
message is undelivered inπ, then either there is a corresponding undelivered
message inπ′, the parallel ticker is in a state that has received that message

hosc.tex; 14/10/2002; 10:47; p.43

44 S. F. Smith, C. L. Talcott

and is ready to do a send, whose corresponding transition inπ would receive
the message. Thus it can not remain undelivered. Similarly,if the choice
ticker is not in its end state the corresponding parallel ticker must eventually
to a transition that causes the choice redex to reduce. Thus by Lemma 5.6 we
have proved

ChoiceTicker(a) a
∅ � MPtime

i
' ParTicker(a) a

∅ � MPtime

5.2.4. Choice Ticker—Ticker Equivalence
Next we consider theTicker(a). We first define a marking,TickerM(a),
for this diagram and verify that it determines a big-step semantics. Then we
show that there is an interaction preserving correspondence between the big-
step semantics ofTicker(a) and that ofChoiceTicker(a) (restricting inputs
to MPtime). To describe the marking, we first expand the loop abbreviations
in theTicker(a) diagram obtaining

Ticker(a) =

{pick(count ∈ Nat);

rec(X)((pick(icnt ∈ Nat);

rec(Y)([constrain(icnt = 0); skip]

⊕

[constrain(icnt > 0); receive(a / time@ x);

send(x / reply(count)); icnt := icnt − 1; Y]);

count := count + 1; X)

⊕

skip) }

TickerM has marks at the diagram entry point, at entry torec(X), at the
entry torec(Y), and at the diagram exit point. SinceTicker has a single
thread of activity, each mark corresponds to a family of states parameterized
by the internal actor and the current count. Thus we have

− T(a) — the initial state;

− TX(a, n) — the state corresponding to entry point torec(X), with
count = n;

− TY(a, n,m), the state corresponding to the entry point in the torec(Y)
with count = n andicnt = m; and

− End(a) — the state corresponding to the exit point.

hosc.tex; 14/10/2002; 10:47; p.44

Specification Diagrams for Actor Systems 45

The possible sequences of rules connecting these states (suppressing labels
for rules with no effect) are the following

(L0) T(a) −−→ TX(a, n)

(Lxe) TX(a, n) −−→ End(a)

(Lxy) TX(a, n) −−→ TY(a, n,m)

(Lyx) TY(a, n, 0) −−→ TX(a, n + 1)

(Lyy) TY(a, n,m+ 1)
a/time@c
−−−−−−−→
c/reply(n)

TY(a, n,m)

Again it is easy to see that the above states and rule sequences determine a
big-step semantics. Now we establish the claimed correspondence between
the big-step semantics ofTicker(a), call it BT, and that ofChoiceTicker(a),
BcT,.

Lemma 5.7 (cT-T): There are functions mappingBcT � MPtime) toBT and
conversely that preserve the associated interaction path.

Proof. The T to cT direction is easy. Define a map from T-configurations
to cT-configurations as follows.

〈 T(a) · µ 〉 a
χ 7→ 〈 cT(a) · µ 〉 a

χ whereµ contains onlytime packets

〈 End(a) · µ 〉 a
χ 7→ 〈 End(a) · µ 〉 a

χ whereµ contains onlyreply packets

〈 TX(a, n) · µ 〉 a
χ 7→ 〈 cT(a, n) · µ · a / tick 〉 a

χ

whereµ contains onlytime or reply packets

〈 TY(a, n,m) · µ 〉 a
χ 7→ 〈 cT(a, n) · µ · a / tick 〉 a

χ

whereµ contains onlytime or reply packets

Assumeπ ∈ BT. Constructπ′ so that at each stagei, the source and target
states are the image of those inπ. If the label ofπ(i) is an input/output or idle
transition then the label ofπ′(i) is the same. If the label ofπ(i) consumes a
time packet then the label ofπ′(i) is the internal transition of cT consuming
the same packet. If the label ofπ(i) is the initial transition choosing ann, the
π′(i) doesn ticks (treated as a macro step so the bookkeeping is easier). If
the label ofπ(i) is the transition to theEnd(a) state then the label ofπ′(i)
is the transition the consumes a tick and moves to the corresponding state.
If the label ofπ(i) is the move fromTY to TX then the label ofπ′(i) is
consumes and sends atick. Finally, if the label ofπ(i) is the move fromTX
to TY choosing anm, the label ofπ′(i) is idle. It is easy to check thatπ′ so
constructed is a path ofBcT.

hosc.tex; 14/10/2002; 10:47; p.45

46 S. F. Smith, C. L. Talcott

The cT to T direction is little tricker, since the mapping ofBcT configu-
rations toBT configurations depends on the stage in the path. Forπ ∈ BcT,
constructπ′ by mapping each transitionπ(i) to a segment of one or two
transitions which we refer to asπ′(i) to simplify bookkeeping. By induction
and intial conditions we assume we know the source ofπ′(i).

− if π(i) is an input, output or idle transition thenπ′(i) is the transition
with the same label starting with the known source.

− if π(i) is the initial internal transition with with source〈 cT(a) · µ 〉 a
χ

(whereµ has onlytime packets) and target〈 cTl(a, 0) · µ · a / tick 〉 a
χ,

thenπ′(i) is a segment of two steps with source〈 T(a) · µ 〉 a
χ and target

〈 TY(a, 0,m) · µ 〉 a
χ wherem is the number oftime transitions inπ

afteri and before the nexttick.

− if π(i) is atime transition with source〈 cTl(a, n) · µ 〉 a
χ thenπ′(i) is a

atime transition with source〈 TY(a, n,m+ 1) · µ 〉 a
χ

− if π(i) is a tick receive/send transition with source〈 cTl(a, n) · µ 〉 a
χ

thenπ′(i) is a segment of two transitions in which the state moves from
TY(a, n, 0) to TY(a, n + 1,m) where againm is the number oftime
transitions before the nexttick

− if π(i) is atick receive only transition to the end state, thenπ′(i) is a
segment of two transitions in which the state moves fromTY(a, n, 0) to
TX(a, n + 1) and then to the end state.

Again it is fairly easy to see thatπ′(i) so constructed is a path ofBT.

5.3. FUNCTION COMPOSER EXAMPLE

We now establish Theorem 3.4 of Section 3.2, which states that the purely
local computation ofg◦f is equivalent to its distributed implementation. This
illustrates how to simplify a complex composite diagram taking advantage of
the additional known context and emerging internal invariants. Recall that for
actor namesa, af , ag and functionsf, g : V → V onV ⊆ U , the diagrams
F(a, f), FC(a, af , ag), andC(a, f, g, af , ag) are defined by

F(a, f) = [receive(a / compute(x) @ xc); send(xc / reply(f(x)))]0...∞

FC(a, af , ag) =

[receive(a / compute(x) @ xc); fresh(xf); send(af / compute(x) @ xf);

receive(xf / reply(y)); fresh(xg); send(ag / compute(y) @ xg);

receive(xg / reply(z)); send(xc / reply(z))]0...∞

hosc.tex; 14/10/2002; 10:47; p.46

Specification Diagrams for Actor Systems 47

C(a, f, g, af , ag) = (FC(a, af , ag) | F(af , f) | F(ag , g))

What we must prove is:

C(a, f, g, af , ag) a
∅

i
' F(a, g ◦ f) a

∅

That is, we must show that

[[C(a, f, g, af , ag) a
∅]] = [[F(a, g ◦ f) a

∅]]

As for the ticker examples, the first step is to define a suitable big-step se-
mantics.

5.3.1. Big-steps for the Function Computer
The marked function computer diagram,FM(a, f), has two marks—one at
the entry to the loop, which is also the entry point of the diagram, and one at
the diagram exit point. Corresponding to this marking we have two families
of states:F(f)(a) = F(a, f) corresponding to the entry point; andFEnd(a)
corresponding to the exit point. The rule sequences connecting these states
correspond to the following big-steps.

(Lend) F(a, f) −−→ FEnd(a)

(LF) F(a, f)
a/compute(v)@c
−−−−−−−−−−→

c/reply(f(v))
F(a, f)

5.3.2. Big steps for the Function Composer
For the big-step simplification of the function composer we form the marked
diagramCM(a, f, g, af , ag) by putting marks on theFC(a, af , ag) part at
the loop entry point, before the second and thirdreceives, and at the loop
exit point, and marking the entry and exit points of theF(af , f) andF(ag , g)
parts. We represent the states corresponding to these marksas a family of
states indexed by triplesi, j, k indicating the diagram mark for each part, and
parameterized by an environment,γ, binding relevant state variables:

Ci,j,k(a, af , ag , γ).

The indexi gives theFC component state:0 is the loop entry,1, 2, indicate
the second and thirdreceives, ande is the exit point. Similarlyj, k give
the f and g function computer states,0 being the loop entry ande being
the loop exit.γ binds the state variables{x, y, xc, xf , xg}, although not all
of the bindings are meaningful at any given marking triple. The possible
rule sequences connecting states are the union of those for each of the three
parallel threads. The rules for theFC part are

(Lfc0) C0,j,k(a, af , ag , γ)
a/compute(v)@c

−−−−−−−−−−−→
af /compute(v)@cf

hosc.tex; 14/10/2002; 10:47; p.47

48 S. F. Smith, C. L. Talcott

C1,j,k(a, af , ag , γ{x 7→ v, xc 7→ c, xf 7→ cf }

where cf is fresh

(Lfc1) C1,j,k(a, af , ag , γ)
cf /reply(w)

−−−−−−−−−−−→
ag/compute(w)@cg

C2,j,k(a, af , ag , γ{y 7→ w, xg 7→ cg}

where cg is fresh andγ(xf) = cf

(Lfc2) C2,j,k(a, af , ag , γ)
cg/reply(u)
−−−−−−−→
c/reply(u)

C0,j,k(a, af , ag , γ{y 7→ w, xg 7→ cg}

if γ(xg) = cg and γ(xc) = c

(Lfce) C0,j,k(a, af , ag ,A, γ) −−→ Ce,j,k(a, af , ag ,A, γ)

The rules for thef computer part are

(Lf0) Ci,0,k(a, af , ag , γ)
af /compute(v)@cf
−−−−−−−−−−−→

cf /reply(f(v))
Ci,0,k(a, af , ag , γ)

(Lfe) Ci,0,k(a, af , ag , γ) −−→ Ci,e,k(a, af , ag , γ)

The rules for theg computer part are similar. Again, it is easy to see the this
determines a big-step semantics since each sequence has at most a receive
followed by a send in addition to some effect free rules.

5.3.3. Function Computer–Function Composer Equivalence
To complete the proof of Theorem 3.4, we form an interaction simulation
relating initial states

〈 F(a, g ◦ f) 〉 a
∅ ∼C 〈 C0,0,0(a, af , ag , γ) 〉

a
∅

We observe the following property of function composer configurations.

− If the C index is0, then there are no pending messages toaf or ag .

− If the C index is1, then, either there is a single pendingcompute mes-
sage toaf or a single pendingreply message toγ(xf).

− If the C index is2, then, either there is a single pendingcompute mes-
sage toag or a single pendingreply message toγ(xg).

− If the C index ise, then there are no pending messages toa, af or ag ,
and no further inputs.

hosc.tex; 14/10/2002; 10:47; p.48

Specification Diagrams for Actor Systems 49

The interaction simulation is as follows (we elide paramaters ofF/C/FEnd
and the interfaces to avoid clutter):

〈 F · µ 〉 ∼C 〈 C0,0,0 · µ 〉

〈 F · µ · a / compute(v) 〉 ∼C 〈 C1,0,0 · µ · af / compute(v) 〉

〈 F · µ · a / compute(v) 〉 ∼C 〈 C1,0,0 · µ · cf / reply(f(v)) 〉

〈 F · µ · a / compute(v) 〉 ∼C 〈 C2,0,0 · µ · ag / compute(f(v)) 〉

〈 F · µ · a / compute(v) 〉 ∼C 〈 C2,0,0 · µ · cg / reply(g(f(v))) 〉

〈 FEnd · µ · a / compute(v) 〉 ∼C 〈 C1,e,0 · µ · cf / reply(f(v)) 〉

〈 FEnd · µ · a / compute(v) 〉 ∼C 〈 C2,e,0 · µ · ag / compute(f(v)) 〉

〈 FEnd · µ · a / compute(v) 〉 ∼C 〈 C2,i,j · µ · cg / reply(g(f(v))) 〉
for (i, j) = (0, e), (e, 0), or e, e

〈 FEnd · µ 〉 ∼C 〈 Ci,j,k · µ 〉
for (i, j, k) = (0, 0, e)/(0, e, 0)/(e, 0, 0)/(0, e, e)/(e, e, 0)/(e, 0, e)/(e, e, e)

The transition maps are defined in a similar manner to the choice/parallel
ticker. For example, in the mappingΦC2F from C to F,Lfc0,Lfc1,Lf0,Lg0

transitions all map to idle transitions, andLfc2 maps toLF . By an argu-
ment similar to the choice/parallel ticker, admissibilityis preserved. Thus by
Lemma 5.6, the proof is complete.

6. Related Work

A wide variety of notations for concurrent/distributed system specification
have been proposed. Specification diagrams share features with previous work
but are still quite separate from existing schools. Different forms of specifica-
tion have different strengths and weaknesses, and for largesystems the com-
bination of multiple techniques will probably be needed. Webriefly review
some of the related approaches here.

The general idea of taking a diagrammatic approach to specification has
been advocated by multiple research projects. A book covering several ap-
proaches is [4]. One reason why the time is ripe for graphicalapproaches is
the emergence of graphical editors, which allow specifications to be entered
without resort to text-based input (seee.g.[9]).

Specification diagrams are most closely related to other forms of message-
passing diagrams, diagrams with vertical lines for processes/threads, and hor-
izontal lines for messages. Message passing diagrams have along history in
software specification and are now most widely known as either UML Se-
quence Diagrams [36], or Message Sequence Charts (MSC’s) [27]. However,

hosc.tex; 14/10/2002; 10:47; p.49

50 S. F. Smith, C. L. Talcott

these sequence diagrams are primarily designed to show possible scenarios
of execution, and not to give all possible scenarios. More recent versions
of UML sequence diagrams [13] have considerable extra syntax added so
more features can be expressed. Several extensions to high-level MSC’s have
also been proposed to make them more expressive, seee.g. [22] and ref-
erences therein. These systems are still considerably lessexpressive than
specification diagrams, which allow arbitrary logical expressions to be em-
bedded, recursion, shared state, and asynchronous fair messaging all in one
formalism An elementary semantics for sequence diagrams appears in [11].
Wirsing and Knapp [44] have developed tools for generating formal exe-
cutable specifications from Jacobson’s interaction diagrams (an ancestor of
sequence diagrams) extended with formal annotations. In the actor model,
event diagrams [21, 24, 12] graphically model scenarios of actor computation
by message-passing edges between actors.

SDL (Specification and Description Language) is an ITU standardised
language that is mainly used for telecommunication applications. Like spec-
ification diagrams, SDL defines both a graphical and a textualrepresentation
form, with message passing an important aspect of the specification. Follow-
ing the evolution of SDL a number of formal semantics have been developed
(see [17, 18]). SDL supports specification of timing properties, but with re-
spect to control and logical properties it is less expressive than specification
diagrams. There are a number of tools for simulation of SDL specifications
and for code generation, something currently missing for specification dia-
grams.

Specification diagrams also share commonalities with otherapproaches to
precise specification, in particular with process algebrassuch as CSP [26, 35],
CCS [32], and theπ-calculus [33]. A number of full specification languages
based on process algebra have been developed; examples include LOTOS
[10], which is based on CSP; it is now an an ISO standard. Process algebras
including CSP do not generally address the issue of fairness. One conse-
quence of this isrecX.X is equivalent toeod in specification diagrams but
not in CSP since the former can starve other processes.

CSP processes have several different semantics (cf. [35]).The traces model
T (P) of a processP is as the name suggests the set of sequences of action
labels of possible computations ofP . The traces model is simple and useful
for a number of analyses. However, the traces model does not distinguish
between the CSP internal and external choice operators, which produce dif-
ferent processes. This is because traces do not express whata process cannot
do. The failures modelF(P), which augments each trace with the sets of
actions that a process can refuse to do, makes the desired distinction. The
internal-external choice distinction is not a natural distinction in the actor
model (see§ 4.3.3).

hosc.tex; 14/10/2002; 10:47; p.50

Specification Diagrams for Actor Systems 51

There is one more problem that must be solved before a suitable process
semantics for CSP is achieved. Namely, a divergent subprocess (one with an
infinite sequence of silent transitions) can make a whole CSPprocess diverge,
preventing other subprocesses from communicating. The failures divergences
modelN (P) extends traces leading to a state that could diverge with all
possible behaviors from that point, expressing the view that if divergence is
possible, then there is nothing useful to say about the process from that point
on. In the actor model, divergence is not a semantic problem.A divergent
actor or group of actors might slow things down, but because of the fairness
assumption they will not affect the interaction semantics of the component
that they belong to.

Hoare [26, 35] defines a satisfaction relation for CSP processes as follows:
Let R be a predicate on traces; then,P |= R just if for every tracetr of P
(tr ∈ T (P)), R(tr) holds. This has a strong analogy to how anSD satisfies
a mathematical specification. LetM be a predicate on interaction paths with
interface(ρ, χ), then aSD with interface(ρ, χ) satisfiesM just if M holds
for each of its interaction paths.

In [35] CSP refinement is characterized algebraically by therequirement
thatP is refined byQ (writtenP v Q) just if P uQ = P , whereu is the CSP
non-deterministic (internal) choice operator. This givesdifferent notions of
refinement depending on the chosen notion of equality, that is, on the choice
of process semantics [35]. CSP’s notion of refinement is analogous to our
interaction refinement relation: supposingP andQ wereSDs, our analogous

relation isQ
i
⊆ P (note the subset direction is opposite in the two for-

malisms: refinement produces fewer paths). However, interaction refinement
has no similar algebraic characterization.

CSP Refinement is transitive and compositional in the sense that if P is
refined byQ andE[X] is a process term with a place holderX for processes,
thenE[P] is refined byE[Q]. An actor component algebra [41] has parallel
composition, hiding, and renaming as primitive operations, and using these
operations we can define component contexts analogous to CSPprocess con-
texts such asE above. The compositionality properties of CSP refinement
above hold for interaction refinement in any actor componentalgebra, and in
particular hold forSDs sinceSDs form a component algebra. So there is also
a CSP-SDanalogy here.

An important property of failures refinement is that it reduces internal
choices but preserves external choice. The specification diagram analog of
external choice (see§ 4.3.3) comes from the ability to express constraints on
the environment and interaction refinement for specification diagrams may
produce further constraints on the environment. However, such diagrams do
not represent actor system behaviors, since as discussed in§ 4.3.2 an actor
system can not refuse messages coming from the environment.The interac-

hosc.tex; 14/10/2002; 10:47; p.51

52 S. F. Smith, C. L. Talcott

tion refinement relation on actor system components will have the property
that the environment is not further constrained as far as messages to visible
actors are concerned, while the variety of replies may be reduced. Thus on
actor system behaviors, interaction refinement enjoys an analogous property.

Temporal logic formulae have been extensively used as a means for logical
specification of concurrent and distributed systems [30, 29]. Recently tempo-
ral logics for distributed object based systems have been developed [16, 14].
While such logics express an extremely broad collection of properties, a
significant disadvantage is the need for large, complex formulae to specify
nontrivial systems: readability of specifications becomesa serious issue even
for small specifications, and users thus require more advanced training. Log-
ics are additionally very useful for expressing propertiesonce the system is
specified. Specification diagrams themselves can serve the purpose of a logic
by directly expressing safety and liveness properties, as was illustrated by
the examples of Section 3. The use of embedded non-computational asser-
tions is very similar to forms found in Dijkstra-style weakest precondition
logics for non-concurrent programs. The manner in which computations may
be “cancelled” in the middle of computing viaconstrain is similar to the
behavior of theassume(“miraculous” or “partial”) command introduced by
Nelson and others [34]. Predicates that impose requirements, assert(φ) in
specification diagrams, correspond to the Dijkstra calculus assertcommand.

Finite automata are useful for formally specifying systemswhich have a
strong state-based behavior. They lack expressivity, but partly make up for
this lack by their amenability to automatic verification by state-space search
techniques. The Statecharts automata formalism [23] has become particularly
popular in industry. The primary weakness of finite automatais that a com-
plex software system may not have a meaningful global state,and properties
of such systems are often more naturally expressed in terms of events and
relations on events.

CONCLUDING REMARKS

Formal specification of protocols is an important research topic due to the
critical nature of network protocols as well as the significant chance of design
errors arising in these protocols. Formal languages to analyze protocols which
can be placed in the hands of practitioners will help increase understanding
and reliability of designs. Our language has a strong formalbasis, so spec-
ifications will not be ambiguous. It is also designed to be usable, the main
reason for the graphical notation. Mathematicians may prefer the textual ver-
sion, but practicing engineers will have a strong preference for the graphical
presentation.

For small specifications as presented here, complete formalproofs of prop-
erties can be given. For larger specifications, protocols can be completely

hosc.tex; 14/10/2002; 10:47; p.52

Specification Diagrams for Actor Systems 53

specified, and more limited aspects of the protocols proven correct by formal
reasoning. So, there is a spectrum of ways in which the language may be
used, for both small and large specifications, and formal andsemi-formal
reasoning.

We have developed several larger examples to more fully testthe theory;
these will be published elsewhere. Perhaps the most important future work
is development of decision procedures for checking restricted properties of
specifications. It would also be interesting to consider developing a real-time
version ofSD.

Acknowledgements

Partial funding for the first author was provided by NSF grants CCR-9619843
and CCR-9988491. Partial funding for the second author was provided by
ONR grant N00014-94-1-0857, NSF grant CRR-9633419, ONR N00012-99-
C-0198, NSF CCR-9900326, DARPA/Rome Labs grant AF F30602-96-1-
0300, DARPA/SRI subcontract 17-000042, DARPA/NASA contract NAS2-
98073.

Thanks to Gul Agha, Carlos H.C. Duarte, Ian Mason, Prasanna Thati, and
the anonymous referees for many helpful comments on variousversions of
this paper.

References

1. M. Abadi and L. Lamport. The existence of refinement mappings. Theor. Comput. Sci.,
82(2):253–284, 1991.

2. G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press, Cambridge, Mass., 1986.

3. G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor computation.
Journal of Functional Programming, 7:1–72, 1997.

4. G. Allwein and J. Barwise, editors.Logical Reasoning With Diagrams. Oxford
University Press, Oxford, 1996.

5. G. Attardi and C. Hewitt. Specifying and proving properites of guardians for distributed
systems, 1978.

6. R. J. R. Back. Refinement calculus II: Parallel and reactive systems. In J. W. de Bakker,
W. P. de Roever, and G. Rozenberg, editors,Stepwise Refinement of Distributed Systems,
volume 430 ofLecture Notes in Computer Science. Springer–Verlag, 1990.

7. R. J. R. Back and K. Sere. Stepwise refinement of parallel algorithms. Science of
Computer Programming, 13:133–180, 1989.

8. H. G. Baker and C. Hewitt. Laws for communicating parallelprocesses. InIFIP
Congress, pages 987–992. IFIP, Aug. 1977.

9. R. Bardohl. Genged - a generic graphical editor for visuallanguages. In1998 IEEE
Symposium on Visual Languages, September 1998.

hosc.tex; 14/10/2002; 10:47; p.53

54 S. F. Smith, C. L. Talcott

10. T. Bolognesi and E. Brinksma. Introduction to the ISO specification language LOTOS.
Computer Networks and ISDN Systems, 14:25–59, 1987.

11. R. Breu, U. Hinkel, C. Hofmann, C. Klein, B. Paech, B. Rumpe, and V. Thurner. Towards
a formalization of the unified modeling language. InECOOP ’97, volume 1241 of
Lecture Notes in Computer Science, pages 344–365. Springer-Verlag, 1997.

12. W. D. Clinger.Foundations of Actor Semantics. PhD thesis, MIT, 1981. MIT Artificial
Intelligence Laboratory AI-TR-633.

13. R. S. Corporation.UML Notation Guide, version 1.1. Sept. 1997. Obtained From
http://www.rational.com.

14. G. Denker. DTL+: A Distributed Temporal Logic Supporting Several Communication
Principles. Technical Report , SRI International, Computer Science Laboratory, 333
Ravenswood Ave, Menlo Park, CA 94025, 1998.To appear.

15. E. Dijkstra and C. Scholten.Predicate Calculus and Program Semantics, volume 14 of
Texts and Monographs in Computer Science. Springer-Verlag, 1990.

16. C. H. C. Duarte. A proof-theoretic approach to the designof object-based mobility. In
H. Bowman and J. Derrick, editors,Formal Methods for Open Object-based Distributed
Systems, Volume 2, pages 37–53. Chapman & Hall, 1997.

17. J. Ellsberger, D. Hogrefe, and A. Sarma.SDL—Formal Object-oriented Language for
Communication Systems. Prentice Hall, 1997.

18. R. Eschbach, U. Glässer, R. Gotzhein, and A. Prinz. On the formal semantics of
sdl-2000: a compilation approach based on an abstract sdl machine. In International
Workshop on Abstract State Machines (ASM’2000), volume 1912 ofLecture Notes in
Computer Science. Springer-Verlag, 2000.

19. M. Felleisen and D. P. Friedman. A syntactic theory of sequential state.Theoretical
Computer Science, 69:243–287, 1989.

20. S. Frølund.Coordinated Distributed Objects: An Actor Based Approach to Synchroniza-
tion. MIT Press, 1996.

21. I. Greif. Semantics of communicating parallel processes. Technical Report 154, MIT,
Project MAC, 1975.

22. E. Gunter, A. Muscholl, and D. Peled. Compositional message sequence charts. In
T. Margaria and W. Yi, editors,Proceedings of the 7th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems(TACAS’01), volume 2031
of Lecture Notes in Computer Science, pages 496–511. Springer, Apr. 2001.

23. D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8(3):231–274, June 1987.

24. C. Hewitt. Viewing control structures as patterns of passing messages.Journal of
Artificial Intelligence, 8(3):323–364, 1977.

25. C. Hewitt, P. Bishop, and R. Steiger. A universal modularactor formalism for artifi-
cial intelligence. InProceedings of 1973 International Joint Conference on Artificial
Intelligence, pages 235–245, Aug. 1973.

26. C. A. R. Hoare.Communicating Sequential Processes. Prentice-Hall, 1985.
27. Message Sequence Chart (MSC). ITU-T Recommendation Z.120, International

Telecommunications Union, Nov. 1996.
28. ITU-T. Revised Recommendation Z. 100 Specification and Description Language

(SDL), May 1994. Addendum 1996.
29. L. Lamport. The temporal logic of actions.ACM TOPLAS, 16(3):872–923, May 1994.
30. Z. Manna and A. Pnueli.The Temporal Logic of Reactive and Concurrent Systems:

Specification. Springer Verlag, 1992.
31. I. A. Mason and C. L. Talcott. Actor languages: Their syntax, semantics, translation, and

equivalence.Theoretical Computer Science, 220:409 – 467, 1999.

hosc.tex; 14/10/2002; 10:47; p.54

Specification Diagrams for Actor Systems 55

32. R. Milner. A Calculus of Communicating Systems, volume 92 ofLecture Notes in
Computer Science. Springer Verlag, 1980.

33. R. Milner.Communicating and Mobile Systems: theπ-Calculus. Cambridge University
Press, May 1999.

34. G. Nelson. A generalization of dijkstra’s calculus.TOPLAS, 11:517–561, 1987.
35. A. Roscoe.The Theory and Practice of Concurrency. Prentice–Hall, 1998.
36. J. Rumbaugh, I. Jacobson, and G. Booch.Unified Modeling Language Reference

Manual. Addison-Wesley, 1998.
37. V. A. Saraswat. Concurrent Constraint Programming. ACM Doctoral Dissertation

Awards: Logic Programming. The MIT Press, Cambridge, MA, 1993.
38. S. Smith. On specification diagrams for actor systems. InC. T. A. Gordon,

A. Pitts, editor,Proceedings of the Second Workshop on Higher-Order Techniques
in Semantics, Electronic Notes in Theoretical Computer Science. Elsevier, 1998.
http://www.elsevier.nl/locate/entcs/volume10.html.

39. S. Smith and C. Talcott. Specification diagrams for actorsystems. InFormal Methods in
Object-Oriented Distributed Systems (FMOODS). Kluwer Academic Publishers, 1999.

40. C. L. Talcott. Interaction semantics for components of distributed systems. In E. Najm
and J.-B. Stefani, editors,1st IFIP Workshop on Formal Methods for Open Object-based
Distributed Systems, FMOODS’96, 1996. Proceedings published in 1997 by Chapman
& Hall.

41. C. L. Talcott. Composable semantic models for actor theories. Higher-Order and
Symbolic Computation, 11(3):281–343, 1998.

42. C. L. Talcott. Actor theories in rewriting logic, 1999. submitted for publication.
43. M. Wirsing. Algebraic specification. In J. van Leeuwen, editor,Handbook of Theoretical

Computer Science, Volume B, pages 675–788. North-Holland, Amsterdam, 1990.
44. M. Wirsing and A. Knapp. A formal approach to object oriented software engineering.

In J. Meseguer, editor,Proc. 1st Intl. Workshop on Rewriting Logic and Its Applications,
number 4 in Electronic Notes in Theoretical Computer Science. Elsevier, 1996. URL:
http://www.elsevier.nl/locate/entcs/volume4.html.

hosc.tex; 14/10/2002; 10:47; p.55

hosc.tex; 14/10/2002; 10:47; p.56

