A Simple Interpretation of OOP in a Language with State

Jonathan Eifrig* Scott Smith* Valery Trifonov* Amy Zwarico

Department of Computer Science
The Johns Hopkins University

May 22, 1993

Abstract

Giving a complete semantics to strongly typed object-oriented programming is a well-known
research problem. Recent work has made significant strides toward solving this problem. How-
ever, in most of this work a purely functional, call-by-name view of objects is taken. In this
paper we give meaning to a call-by-value, typed object language with updatable instance vari-
ables, and prove the type system given is sound; i.e., well-typed programs do not experience
“message not understood” errors.

The semantics is given by a translation of the object-based language into a state-based
language with a simple type discipline and with a new notion of a once-assignable cell.

1 Introduction

Giving full and faithful meaning to typed object-oriented programming languages is a well-known
research problem. There has been considerable recent activity in defining powerful type systems for
OOP [CHCY0, CCH*89, BM92, Bru93, Mit90, PT93]. These approaches have a natural model in F?%
and admit a very powerful type theory utilizing F-bounded quantification. One major shortcoming
of all these approaches is they take a functional view of objects. Thus, the internal state of an
object must be explicitly threaded through the control structure of the program. This threading
however damages the very property that object-based programming techniques were designed to
address: the localized partitioning of a global state.

What we accomplish here is an interpretation of objects in a PCF-like language extended to
have state operations. Qur objects are thus objects that much more closely correspond to objects
in a real implementation, with real instance variables that may be updated in place.

We begin by defining a representative state-based typed object-oriented language LOOP, and
show how the semantics of this language may be defined by translating it into a simple imperative
language, SOOP. SOOP is roughly the call-by-value lambda calculus extended with records and
references, and an additional a new construct, the single-assignment reference, for interpreting self-
referential objects. This new construct is not strictly necessary, but we argue why it is more useful
to have it than to suffer the consequences of its absence.

The translation of expressions is similar to other interpretations of records as objects developed
for untyped OOP [CP89, Red88]. The main difference is use of the single assignment reference in

*Partially supported by NSF grant CCR-9109070
T Authors’ email addresses: eifrig@cs.jhu.edu, scott@cs.jhu.edu, trifonov@cs.jhu.edu, amy@cs.jhu.edu

place of the Y-combinator to avoid copying of code. In a functional world the two are equivalent,
but not in the presence of state.

What we do not accomplish here is the incorporation of the powerful type language of F-bounded
polymorphism into SOOP. In order to make the state problem tractable, we have elected to use
a simpler typing scheme based on an approach requiring inheritance to conform with subtyping.
Subtyping in SOOP is the standard record subsumption model following Cardelli [Car84]. Since
many real-world OOP languages enforce this criterion, it is not wholly unreasonable, and may
ultimately prove the most tractable approach if the type-checking and type-inference problems of
F-bounded polymorphism prove intractable [Pie92].

We define a translation of any typed LOOP program into a typed SOOP program, and together
with a proof of the type soundness of SOOP this gives us type soundness and lack of run-time
type errors for LOOP. The result is a state-based object-oriented language with a formally defined
semantics and provably sound type theory. Also, the tools we use are simple operational interpreters
and type systems, so this can also serve as a complete, comprehensible specification of the language.
The same can not be said for F-bounded polymorphism. One measure of the complexity of that
type system is that it cannot be given meaning in second-order logic, whereas the language we
study has a semantics expressible in Peano Arithmetic.

Some other type-safe systems have been designed that are not based on F-bounded polymor-
phism [GJ90, SCB*86], but these require method bodies to be re-type checked when subclasses
are defined. In a language supporting first-class class definitions, in which classes may be extended
dynamically, this re-checking needs to be performed during program execution and type-checking
of programs becomes essentially a run-time task.

Section 2 presents the syntax and type system of LOOP along with an informal discussion of its
semantics. Sections 3 and 4 introduce the SOOP language and type system, its formal operational
semantics, and proofs of type soundness. Section 5 contains the translation of LOOP into SOOP,
thus giving a rigorous semantics to LOOP programs. A type soundness result for the LOOP type
system is presented in Section 5.

2 The LOOP Language

We now define LOOP (Little Object-Oriented Programming language). LOOP is a strongly-typed
extension of call-by-value PCF with just enough additional constructs to capture the spirit of most
Smalltalk-derived languages.

Identifiers of LOOP are divided into four sorts: v € Ky, are function parameters, s € Kjass
are bound class names, m € K etn are method names, and z € Kj,q are instance variables. These
sorts are present for convenience only; the ability to syntactically distinguish identifiers will enable
the translation from LOOP to SOOP to be purely syntactic in nature. The LOOP expressions are
the least set

e € & u= wv|0|1]...]|true|false|pred(e)|succ(e) | is_zero(e)
| if eg thene; elseey | fn(v)=>e | ep(e1) | empty
| class sis e:Twith{{z; =€1,...,2, =€, },{m1 =¢€,...,my =€, }}

|newe |s|ex|ex:=e|e<-m|em

where 7 is a type, defined below.*
Many of the LOOP expressions are familiar PCF terms; the remainder serve to represent classes
and objects. The constant empty denotes the class with no instance variables or methods; other

*Explicit typing of class expressions enables our translation to be completely syntactic.

classes are created by extending an existing class with additional instance variables and methods.
The expression

class s ise: 7 with {{z1 =e€1,...,z, =€}, {m1=¢€},...,my =€ ,}}

extends the class e by adding the new instance variables and methods indicated by the z; and m;
(1<i<n,1<7<n)respectively. With each new instance variable z; is associated an expression
€;, defining the initial value of the instance variable upon object creation. In a strongly typed
framework the Smalltalk paradigm of not giving variables initial values makes no sense because
it admits the possibility that an instance variable may be used when it is undefined. Within the
bodies of the method definitions and instance variable initializations, the name s is bound and
plays the role of self: s.z denotes the value of the instance variable z, s.z := e updates the value
of the instance variable with the value of the expression e, and s.m sends the message m to the
self. In LOOP, classes are first-class terms. new e creates an object of the class denoted by e and
returns that object as its value, while e <-m is the familiar “send message” construct. Note that
sending messages to self inside a class definition, s.m, and sending a message to an object, e <-m,
have different notation in order to make the translation into SOOP purely syntactic.

Recursive functions are definable in LOOP via the implicit recursion present in class definitions:
each method defined in a class can be used in the body of any of the method definitions. Thus,
all terms definable in PCF are definable in LOOP. With this in mind, we will treat the usual
arithmetic functions on integers as macros of LOOP.

A formal definition of the meaning of a LOOP program is given in Section 5, in which we
define a translation of LOOP programs into another language, SOOP. Class-based languages (of
which LOOP is an example) have no syntax for objects themselves; thus, programs like new empty
compute to a value which is inexpressible within the language itself.

2.1 The Loop Type System
The syntax of LOOP types is as follows.

M e M == {my:m,....mp:7r}
I € I = {ay:71,...,2: Tk}
C € C == (I,M)
7 € 7T == Bool|Num |7—o|TObj{M}|TOpen0bj{C}|TClass{C'}

Terms denoting objects have types of the form TObj{M} or TOpenObj{C'}, depending on
whether the object is being viewed from the “outside” or the “inside.” Objects viewed from the out-
side (e.g., expressions of the form new e) have type TObj{M } (where M is a method context, a map-
ping from method names to types); these terms respond to the messages listed in A, while the in-
stance variables remain hidden. Object terms viewed from the inside (i.e., the name s bound within
a class expression) have type TOpenObj{(/, M)} (where [is an instance context, analogous to the
method context above); such terms have both their instance variables and their method names visi-
ble. Terms of type TClass{(/, M)} represent classes. For e € TClass{(/, M)}, new e creates an ob-
ject of type TObj{M}, and classsise: twith{{z; =e€1,...,z, = e, },{mi =¢€|,...,my =€/ ,}}
extends e to a subclass with added and overridden methods and instance variables.

LOOP types and contexts are partially ordered by the subtyping relation <, axiomatized by
the rules in Figure 1. PCF types are ordered in the usual way [Car84]. Two instance contexts [
and I, are ordered, I1 < I, only if every instance variable name occurring in I; occurs in I3 with
the same type, although I; may map additional names as well. Method contexts have a slightly

Fp<o "TIST/
(TRefl) — (TTrans) Fosr (TFunc) Foso
Fr<r Fp<T Fr—o < 7'—0o
n' <n
(Tinst) 7, =o0; (foreach 1 <i<n')
ns
Flayom, oo an i1} <{zy 09, 2 1o}
n' <n
(TMeth) F 7 <o; (foreach 1 <i<n')
e
F{my:m,...omy i} <{my:oy,....my 10}
FI<TI , ,
i
(TClass) FM<M (TOb)) FM<M
FL,M)<(I',M') FTObj{M} < TObj{M'}
< ’/
(TOpenOby) e
 TOpen0bj{C'} < TOpenObj{C’}

Figure 1: LOOP Subtyping Rules

stronger ordering since methods are not mutable: two method contexts My and M, are ordered
My < My if an only if M;(m) < My(m), for each method name m mapped in M;. Two object types
are ordered if their corresponding method contexts are ordered; there is no non-trivial ordering on
class types.

In practice, these orderings restrict the ways in which classes can be extended. A class can be
extended by the addition of new instance variables and methods, but overriding an existing method
can only be done with a new method body whose type is a subtype of the one overridden. This
restriction, critiqued in [CHC90], is necessary in our simple interpretation; if methods could be
overridden with new methods of arbitrary types, the correctness of the other methods of the class
(which may make use of the now-overridden method name) could not be guaranteed. The use of a
semantics based on F-bounded polymorphism would allow for a more generous solution, but that
is beyond the scope of this work.

The typing rules for LOOP terms are listed in Figure 2. Many of the rules are standard PCF
rules. Rules (Inst), (Assn), and (Self) allow for instance variable access, update, and method
selection of an object based on its “internal” view. Rule (Mesg) allows for method selection of an
object based on its “external” view. Rule (Empty) types the empty expression, and rule (New)
types object creation; note how instance variable types are hidden at this point.

The most interesting rule is for forming new class expressions, (Class). The class name s
in the class expression is bound within the bodies of method definitions and instance variable
initializations, and plays the role of “self”. In this rule @ is the concatenation operation on
classes. It makes explicit the restriction on class extension to subtypes.

DEerFINITION 2.1 (I, M)&{7; 77, ™; 1 0;} denotes the class context C" = (I, M) such that I'(z) =
7 if @ = a; for some i and I'(z) = I(z) otherwise, and M'(z) = o; if m = m; for some i and
M'(z) = M(z) otherwise. Furthermore, the above is considered well-formed only when for each ¢,

if z; € dom(C') then 7; = C(x;), and if m; € dom(C), o; < C(my).

The type system given here for the language is by no means the strongest one possible; in fact,

(Sub)

(Num)

(Succ)

(True)

(Inst)

(Self)

(Class)

-
Lre-T (Var)
T

n is a numeral
FFn:Num

(Pred)

FFe:Num

(IsZero)
FE F succ(e) : Num

(False)
F F true :Bool

F ey :Bool
Fey:T
Fltes:t

FFife; thenegyelsees: T

Flre :7—0
Fltey:r

EFe(ey):o

E F e : TOpen0bj{l, M}
I(z)=r1

Frexz:t

(Assn)

FE(e) = TOpenObj{/, M}
M(m)=r

Frtem:T

(Empty)

EFe:TClass{l, M}

(Mesg)
E F new e : TObj{M}

7 = TClass{Cy}
EFep:TClass{Cyp}

Ewv)=rT1
Eruv:r

E F e :Num

FE F pred(e) : Num

E+e:Num
E F is_zero(e) : Bool

F F false : Bool

FEov:tke:o

EFfn(v)=>e :7—0

EFe:TObj{M}
M(m)=r

FrFe<-m:1

E F ey : TOpenObj{l, M}
I(z)="T
EFltey:7

EFtelx:i=es: T

E | empty : TClass{{},{}}

EFe:TObj{M}
M(m)=r

EFre<c-m:1

E,s:TOpen0bj{Co @ {Z 7, :0}} F ey : 7, (for each e}, € €)
E,s:TOpen0bj{Co @ {z7,m:0}}F fi: ok, (for each f € f)

FFclasssise:Twith{T=e€,m= f}:TClass{Co @ {T 77, m:0}}

Figure 2: LOOP Typing Rules

the notable lack of recursive types severely restricts the expressibility of the language. The system
is merely illustrative of the kinds of type theories possible for the language, and the ways in which
these type theories can be shown sound via our operational translation of the LOOP language.

We will hereafter use the syntactic abbreviations let n = e; in ey to mean (fn (n) => e3)(e1),
€1; ez to mean (fn (a) => (fn (b) => b))(e1)(e2), the type unit to mean TObj{}, and () to be an
element of this type, namely new empty.

2.2 Programming in LOOP

Although LOOP does not have an explicit recursion operator or updatable reference cells, both of
these constructs are definable within LOOP.
A simple LOOP program is the following:

let Pointl = class self is empty:TClass{{},{}} with {
{x = 0},
{getx = fn a => self.x,
setx = fn n => self.x := n; (),
align = fn p => p<-setx (self.getx ())}}
in let Point2 = class self is Pointl:7; with {{y=0},
{gety = fn a => self.y,
sety = fn n => self.y := n; (),
align2 = fn p => self.align p; p<-sety (self.gety ())}}
in let pl = new Point2 in let p2 = new Point2 in pil<-align2 p2

where the types of Point1 and Point2, 7y and 75, are

71 = TClass{{x:Num},{getx:unit -> Num, setx:Num -> unit,
align:TObj{setx:Num -> unit} -> unit}}

79 = TClass{{x:Num,y:Num},{getx:unit -> Num, setx:Num -> unit,
gety:unit -> Num, sety:Num -> unit, align:TObj{setx:Num -> unit} -> unit,
align2:TObj{sety:Num -> unit, align:TObj{setx:Num -> unit} -> unit}} -> unit}}

Pointl is a class of simple one-dimensional points that can move about and in addition can
respond to an align message that moves a second point to its position. Class Point2 further refines
this idea by adding a second coordinate and a new alignment method; note that this new method
uses one inherited from the parent class Point1. Observe that the align and align2 methods may
be typed in our language even though they may take objects of their own class as arguments.

Simulating this program in a functional interpretation of OOP such as [Bru93, PT93] requires an
explicit threading of state in some fashion. In particular, align2 modifies the state of its argument
object while executing. The simple encodings of object methods as state transformers, taking the
state of their object as an additional parameter and returning their modified state as an additional
result, are insufficient here. To properly account for this the states of every object in the system
would need to be threaded through the flow of control, since it will not in general be known what
object is being modified by the align method.

3 The SOOP Language

We define the meaning of LOOP programs in terms of a lower-level “implementation” language
SOOP (Semantics for Object-Oriented Programming), a call-by-value language which offers simple
operations on records and reference cells in addition to most of the standard PCF constructs.
The only significant departure from standard notions is the single-assignment reference (SAR) cell,
which allows for a natural and type-sound interpretation of objects in the presence of effects.

In standard encodings of object-oriented languages [CP89, Red88] an object is formed by taking
a fixed point of a function that represents its class, referred to below as the “class function.” This
results in a recursive record, and the methods of the object—fields of the record—gain access to
its “self” by unrolling the fixed point expression. Consider as an informal illustration the case of
an object o of class ¢ with method m whose definition refers to the value of the object:

c = class ...
= Xself {m=...self ...
methods {m = ..self..} translates to ¢ elf . {m self ...}
o=Y(c)
O = new c

where Y is the fixed point combinator. In purely functional languages this encoding produces
perfectly adequate results, but the situation changes with the introduction of effects and the natural
for them (though not intrinsic [CF91]) call-by-value semantics. As pointed out in [Wan89, CHC90,
PT93] the fixed point combinator is then only well-defined on functionals, and classes do not
correspond to functionals.

One possible solution is to “freeze” the access of an object to its “self,” e.g.

c=Xself A).{m = ...self()...}
o=Y(e)()

but it is not completely satisfactory because a desirable feature of a state-based object-oriented
language is the support of mutable instance variables, private to each object. It is also desirable
to allow the initial value of each instance variable or method to include initialization code for
allocation of mutable cells. However, creating cells in the record fields above would cause new cells
to be allocated at each unrolling of the fixed point, i.e. at each access of m to “self.”

Two approaches to solving this problem are discussed in [Hen91]; the one for which the author
gives a denotational semantics is based on the interpretation of the fixed points of class functions as
state transformers. This bears some similarity to the above translation, but the state is represented
as an explicit parameter of certain semantic functions, which allows the reallocation to be avoided
by reusing the same state for each unrolling of the fixed point. The presence of imperative constructs
in our target language renders this method inapplicable to SOOP.

Alternatively the cells may be created before the fixed point is taken, but inside another ab-
straction of the class function, since otherwise they will be shared by all instances of the class. In
our informal notation an object of class ¢ with instance variable x is then

c = class
variables {x = ..} o c=A).let z=ref ...in
methods {m = ..self..} yielding rASGlf. M)Az =2, m=...self()...}
O — new C 0= Y(C())()

However we can only do this under the otherwise unjustified restriction that the initial values of the
instance variables may not refer to self, even if they are not strict in it. It is possible to overcome

this limitation by initializing all private variables to some default values of their respective types,
and having a special method automatically invoked after the fixed point is computed to assign the
required values to them, but this would further complicate the semantics of class extension and
inheritance.

Our solution is to define a fixed point combinator in terms of mutable cells, in the spirit of
Landin’s suggestion [Lan64]. Operationally it is equivalent to

Y, = Af.let r = ref null in (set (v, f(r)); !'r)

where null is a “dummy” initial value, and set (7, v) and ! r are the assignment to and dereferencing
of the mutable cell r. The argument f now must operate on a reference cell which is to be assigned
the value of the fixed point. This combinator evaluates f only once, and therefore it can be applied
to class functions with side effects, in particular allocating new mutable cells, to obtain objects
with the intuitively expected behavior.

The use of an ordinary mutable cell r in the definition of Y, however makes impossible the
type-sound class extensions: the class function of the extended class must first pass its argument
(now a pointer to the future object) to the class function of the superclass, and then modify or add
new fields to the resulting record. But since a class function is now of type 7 Ref -> 7, where 7 is
the type of the object, it is a type error to apply it to an argument of type 7' Ref, where 7/ is the
type of the objects of the extended class, even though 7’ is a subtype of 7 (i.e. any value of type 7’/
is also a value of type 7), because 7’ Ref cannot be a subtype of 7 Ref in a sound typing system.

This is the rationale for the introduction of the SAR cells. Intuitively the SAR z is both
allocated and assigned to via the new construct

let z be SAR to e.

The cell is allocated before but assigned the value of e after e has been evaluated, and the whole
construct then returns the same value. No other assignment to z is possible and this makes
a (covariant) subtyping rule for SAR types sound. The value pointed to by z is accessible from
within e via dereferencing (for SARs), e.g. | «; this returns the value of e itself once the assignment
has been performed. Thus the evaluation of let be SAR to e is similar to taking the fixed point
of Az.e (if we define | @ as x). The important difference is that the body e is not reevaluated each
time | z is computed, resolving the problem of allocating cells for instance variables encountered
in the fixed point translation.

During the evaluation of e the result of dereferencing = is “undefined,” and the special value
null is introduced in the operational semantics for this case. In effect the value of the expression
let z be SAR to e is undefined if e is strict in @, which in terms of LOOP happens exactly when
an object refers to its own value during the initialization of its instance variables and methods.
Note that the fixed point translation of such an object results in an expression whose evaluation
in a call-by-value language leads to infinite recursion; hence a LOOP program translated to SOOP
yields null only if its translation under the fixed point semantics fails to terminate. This property of
the SOOP operational interpreter is similar to the detection of “black holes” by some interpreters
for lazy languages [Wad92].

3.1 SOOP Syntax

Let z range over the countable set of variables Var and ! range over the countable set of labels Lab.
The values v € Val and expressions e € Fxzp of SOOP are the least inductive collections defined as

i <rmforallie{l, ..., m} m < m'
(SuBREGORD) Qe ooy bt <{lom, oo, b s [}
™ <7 < T
(SuBFun) 1= 1 2 =2
Ty =>7y <71 ->T9
<
(SUBSAR) 7" SAR < 7 SAR

Figure 3: Subtyping rules of SOOP.

follows:
s=z | n | b | nul | Az.e | {li =01, ..., L = vnl}
n= v | e1(ez) | if € then ey else ey
| is_zero (€') | succ (e') | pred (¢')
| {li=e1, ..., ln=enlt | €.
| refe | Ve | set(eq, e2)
|

let z be SARto e’ | ¢

where n € Num &' {0, 1, ...} and b € Bool def {true, false}. Both Az.e and let z be SAR to e bind

x in e; | € dereferences the SAR cell which is the value of €.

3.2 Type System
The set of types of SOOP programs 7 € Typ is the least inductive collection satisfying

7 2= Num | Bool | 7/ =>7" | {{li:7m, ..., L :7ul} | 7 Ref | 7/ SAR

As in LOOP there is a subtyping relation < on types of SOOP—it is the least reflexive transitive
relation generated by the rules in Figure 3; these include the standard rules for record and function
types [Car84]. Non-trivial subtyping between reference types is unsound; however the discipline of
once-assigning values to SAR cells allows us to treat the SAR type constructor as covariant without
losing soundness. This covariance is crucial for the type-checking of the translation of LOOP class
extensions into SOOP.

A type environment I is a finite map in Knv f Yar — Typ; a typing judgement for expressions is
a triple from Env X Ezp x Typ written in the form I' - e : 7. The typing rules (whose inductive closure
are the judgements) are given in Figure 4. Most of the rules reflect the usual typing properties of
PCF terms, records and reference cells in the presence of subtyping. The rule (SELF) gives the
expected relation between the type of a SAR cell and the value it points to. The rule for the new
construct (SAR) requires the body e to be of (a subtype of) the type of the value that z points to
by assumption — intuitively this guarantees that e can be safely assigned to z.

4 Semantics of SOOP

We now give the semantics of SOOP and prove type soundness. Readers may want to skip to the
translation of LOOP to SOOP, in Section 5, on first reading.

(SuB) Ire :FTI— p T,T <7 (VAR) TF o T(a)
(Num) TE o Nom (Boor) T Boal
(Con) — BI?OI1 if e tPl:e'r: 211 ;IZe € : 71j el (IsZero) 'k il;_'z_efo: (Nel)”:nBool
(Sueo) r I—I;L'J_c: (:e'\)h:mlcmm (PRED) r I—Fplr_ej (:e';hjnlzlum
(APP) L ;l__>€:/(€2) : le ma il (ABs) FFHI{—I/\;> ;—}:7"_—6;7'7;/
(SAR) Frﬂ{lit'_ag EeSSAEFi lt_oee::TT (SeLF) W
(REF) r I—l;elf_ee::: Ref (DErEF) %
(SeT) — elf:l—TsS:f(el, 625:'_7'62 — (SeLECT) F;%M
(Recorn) mpm, :Fef, . Tz,for:ail}e {{]111 T m} o T}

Figure 4: Typing rules of SOOP.

4.1 Operational Interpreter for SOOP

We give semantics of SOOP in the general framework of [FH92, MT91] developed further in [CF91,
WF91]. The operational interpreter of the language is specified by binary relations between SOOP
terms in memory environments, which represent the notion of computation. As in [WF91] the
memory is not treated as a syntactic context but instead as a function defined on variables, because
the let be SAR to e construct cannot be represented as a pair of independent allocation and
assignment without loss of type soundness, and therefore a memory context may need more than
one “holes” for each of the bodies of these constructs being evaluated. The basic schema needs
certain adjustments in order to accommodate the two kinds of reference cells in the language (Ref
and SAR).

We use the notation L + R for the disjoint sum (co-product) S of two sets L and R, with the
injectioninlg € L — 9, projection outls € S — L and discriminator functionsislg € 5 — Bool (and
the respective for R) defined for it (the subscripts will be dropped when the context determines
S). The flattening projection outs € S — L U R is defined by

outls(v), if isls(v)
outrs(v), otherwise.

outg(v) = {

The notation {z — v} will be used for the map defined only on z with value v; the concatenation
p|lp’ of two maps p and p' satisfies

,) (), if 2 €edom(y)
(k') () = { p(z), otherwise.

(=, ROe-)o)l) (% Bl{o/a}e])
(X, R[if true then ey else e3]) —1 (X, Rleq])
(X, R[if false then e else e3]) —1 (X, Rleg])
(X, Rliszero (n)]) 1 (X, Rtrue]), if [n] =0
(X, Rliszero (n)]) 1 (X, Rl[false]), if [n] #0
(3, R[succ (n)]) 1 (X, R[n']), where [n'] = [n] + 1
(X, R[pred (n)]) —1 (X, R[n]), where [n'] = [n] -1
(X, Ri{{li =v1, .oy bn = o [}le]) —1 (35, Rlvk]), ifke{l, ..., m}
(X, Rlref v]) +—1 (X||{z —inl(v)}, R[z]), where z ¢ dom(X)
(X, R['z]) —1 (X, Rout(X(z))]), ifisl(X(z))
(X, R[set (z, v)]) —1 (X|{z—inl(v)}, R[v]), if isl(X(z))
(%, R[T z]) 1 (Z, Rout(E(2))]),ifisr(E(z)) and outr(X(z)) # null
(3, R[Tz]) ~—1 (0, null), if isr(X(2)) and outr(X(z)) = null
(¥, Rlet be SAR toe]) 1 (Z||{z' —inr(null)}, R[let 2’ be SAR to {z'/z}e]),
if © ¢ dom(X) orisl(X(z)), and where 2’ ¢ dom(X)
(X, R[let z be SAR to v]) 1 (X||{z —inr(v)}, R[v]), if isr(X(z))

Figure 5: The single-step computation.

A memory X is a finite map in Mem e Var — (Val 4+ Val). The intended interpretation is:
if z € dom(X), then z is the identifier of a reference cell; isl(X(z)) is true if it is a Ref cell, and
isr(X(x)) is true if the cell is a SAR. In both cases out(X(z)) is the value contained in the cell. An
expression e is closed in a memory X if F'V (e) C dom(X); here F'V (e) denotes the set of free variables
of the expression e. A memory X is consistent if out(X(z)) is closed in X for all z € dom(X).

A computation state (X, e) is a pair of a memory and an expression; it is closed if ¥ is
consistent and e is closed in ¥. We consider two states (¥, e) and (X', €’) identical if they
only differ in the names of the free variables, i.e. if there exists a bijection pu from dom(X) to
dom(X') and a corresponding substitution o = {u(z)/z for all z € dom(¥)} such that oe = ¢’ and
oX(z) = X (u(z)) for all z € dom(Y).

A reduction context R[o] with respect to a memory X is recursively defined as

Rlo] == o | R'[o](e) | v(R'[o]) | if R'[o] then e; else e,
| iszero (R'[0]) | succ (R'[o]) | pred (R'[0])
| li=2v1, ..., lg—1 = vk—1, Ik = R'[0], lgs1 = €xq1y oy Lw = en[t | R'[0].1

| ref R'[o] | ! R'[o] | set (R'[o], e) | set (v, R'[0])
| let 2 be SAR to R'[o], if isr(X(z)) | 1 R'[0]

where R'[o] is a reduction context with respect to ¥. R[e] is the result of substituting e for o in
RJo]; it may involve name-capture.

The single-step computation 1 is the least binary relation on Mem x Ezp which relates all
closed computation states of the forms shown in Figure 5, where R[o] is a reduction context with
respect to Y, and [-] € Num — N is the obvious interpretation of the numerals; the arguments to
R in the left column are redeces. We write {€'/z}e for the name-capture avoiding substitution of
the term e’ for z in e; in particular it satisfies

if ' € FV(€'), then {€'/z}\a’.e = Xa". {€'/x}{a"[2'}e, where 2" ¢ FV(e)UFV (') U {z}.

By induction on the structure of terms and inspection of — it is easy to demonstrate the correctness
of the following.

LEMMA 4.1 + defines a partial function on Fzp, i.e. for any state (X, €) there exists at most one
(X', €') such that (X, e) —q (X', €').

LEMMA 4.2 If (3, €) —q (X', €'}, then (X', €') is closed.

The computation —* is the reflexive transitive closure of —1. A closed computation state (X, e)
is stuck (written (X, e)]) if e ¢ Val and there is no state (X’, €’) such that (X, e) —; (X', €/). A
state (X, e) diverges (written (X, €) 1) if (¥, €) —1 (X', €') for some (X', €'}, and for each (¥, €')
such that (X, e) —* (X', €) there exists a state (X", €’’) such that (X', €') —q (X7, €”).

4.2 Soundness of the Type System of SOOP
A memory ¥ is typable in a type environment I if for all z € dom(X)
(i) isl(E(z)) and I' -z : 7 Ref and I' Foutl(X(z)) : 7 for some type 7; or

(ii) ésr(X(z)) and either I' - 2 : 7 SAR and I' F outr(X(z)) : 7 for some type 7, oroutr(X(z)) = null

A typing judgement for computation states is a quadruple of the form I' - (¥, €) : 7 in which
(X, €) is a closed computation state, ¥ is typable in I', and I' - e : 7. A state (X, e) has a type if
I' - (X, e) : 7 for some type environment I' and type 7.

LEMMA 4.3 (REPLACEMENT) U T'F (X, Rle]):7,T'Fe:7, T'Fe : 7" and FV(e') CFV(e), then
I'F (X, Rle): .

Proof: By induction on the structure of the proof of I' - (X, Rle]) : 7. O

LEmMMA 4.4 (SuBJECT REDUCTION) If I' - (X, €) : 7 and (X, €) 1 (¥, €’), then either ¢/ = null,
or I'"F (¥, ¢') : 7 for some type environment I".

Proof: Based on a case analysis of the single-step computation. In most cases the statement
is a direct corollary of Lemma 4.3 and the typability of ¥ in I'. The type environment I' is an
extension of I' in the cases when the reduction extends the domain of the memory (corresponding
to the allocation of a cell). O

LEMMA 4.5 (STuck EXPRESSIONS ARE UNTYPABLE) If (¥, €)], then (¥, €) has no type.

Proof: Note that the proof rules for types of SOOP terms have as antecedents judgements about
the types of all of their subexpressions, hence all subterms of a typable term must be typable. Also
note that there is exactly one typing rule for each language construct, in addition to the (SuB) rule
which however can only be applied if a type for the term is already deduced. Suppose now that
(¥, e)l and let e = Reg] be a decomposition of e such that R is a reduction context with respect to
Y. and eg ¢ Val and for every further decomposition eg = R'[¢'] either R'[o] = o or €’ € Val; such R
and eg exist since e ¢ Val, and Val forms the inductive basis for Ezp. The rest of the proof employs
analysis of the structure of eg; we will illustrate the ideas for the case eg = e1(ez).

Both e; and e; must be values, otherwise further nontrivial decomposition of eg is possible. But
e1 cannot be of the form Az.e’, because then it is a redex, and (X, R[eg]) —1 (8, R[{ez/2}€]),
which contradicts (X, e)l. Hence ey is a non-functional value, and an inspection of the possible
types for these shows that none of them matches the antecedent of the only effectively applicable
typing rule (APP); it must be noted here that each free variable z of e is in dom(X), and the
typability of 3 implies that the type of z is either 7 Ref or 7 SAR for some type 7. Therefore eq is
untypable, and so is e. |

As a corollary of Lemmas 4.4 and 4.5 we have

[{zimm}] = Alzi:[n] Reff} [{mi 7} {m; : [m]}
[Tobj{M}] = [M] [(1,M)] = {inst:[I], meth: [M]]}
[TClass{C'}] = [C] SAR->[C] [TopenObj{C}] = [C] SAR

Figure 6: Translation of LOOP Types to SOOP Types

THEOREM 4.6 (SOUNDNESS OF THE TYPE SYSTEM) If I' F (X, e) : 7 for some I', then either
(X, €)1, or (X, €) —=* (@, null), or (X,) —* (X', €') for some I and (X', €’) such that ¢ € Val
and IV = (X', &) : 7.

5 Translating LOOP to SOOP

The translation of LOOP terms to SOOP terms may be defined by a simple induction on term
structure. In order to create a value corresponding to a LOOP object, a single-assignment cell is
first allocated and its name added to the current environment; this name will then play the role
of self in the object’s methods. A pair of records, corresponding to the sets of instance variables
and methods of the object, is then constructed, with fields incrementally added from the chain of
inheritance of the object. Finally, this completed record is stored into the created cell; since the
name of this cell is (presumably) used in the construction of the record, this assignment “ties the
knot” and constructs the self-referential object.

We begin with a translation of LOOP types and contexts to SOOP types; the translation is
shown in Figure 6. In this framework, objects types translate into record types, and classes
translate into functions from single-assignment cells to records. Some motivations for this encoding
are to be found in the previous section.

We may translate LOOP terms into SOOP terms via the translation function [-] of Figure 7.
PCF terms translate to themselves, as SOOP is just another extension of PCF. As discussed in
the previous section, objects are interpreted as records; therefore, the “send message” expression
is translated into a record selection from the corresponding SOOP term. Terms of type TOpenObj
(i.e., the “self” of an object) are translated into single-assignment cells that point to the object in
question.

Terms of type TClass represent classes, which as mentioned above translate to functions from
a SAR cell name to a record. The empty expression therefore is translated as a function returning
the record denoting the class with no instance variables or methods. Classes created by the class
expression are translated into functions in a similar way. These functions first apply the superclass
to their bound parameter, creating a record denoting an instance of the superclass. This record
is then modified by the addition or replacement of one or more fields, and returned. Note that
extend ...with ... is not part of the SOOP syntax, it is metanotation defined as follows.

DEFINITION 5.1

extend (TClass(/, M)) e with def {inst = {2z} = e.inst.z}, T, =¢;}
{inst = {{T;=e;[},meth={m; = fi}} =~ meth = {{m! = e.meth.m’, m; = f;[}}

for each z}, m} such that z} € dom(I) but 2} ¢ T, =¢; and m; € dom(M) but m ¢ m; = f;.

[e<-m] = [e].m
[s] Is
[e1.2] ' ([e1]-inst).x

[er.x :=ez] = set (([er].inst).z, [ez])
[er.m] = ([e1].meth).m
[new e] = (let s be SAR to [e] s).meth

[empty] = As.{linst = {|[}, meth = {[[}[}
[class s iseg: Twith As. extend (7)([eo](s)) with

{{z=e{m=T711 — {inst = {x = ref [e][}, meth = {m = [[J}]}

Figure 7: Translation of LOOP Terms to SOOP Terms

The new expression creates a SAR cell and passes it as a parameter to the corresponding class
expression, resulting in a new record. The “public” half of this record is then selected and returned,
thereby hiding the instance variables from view.

This translation gives a semantics for LOOP programs in terms of their corresponding SOOP
programs; for any closed terms e; and ey, we have an evaluation relation e; = ey if and only if
[e1] —* [e2]. Similarly, the translation gives a definition of the types of LOOP programs:

DerFINITION 5.2 A LOOP program e has type 7 in environment E, written F |= e : 7, if and only
if [E] Fsoop [€] : [7]-

With this definition, we can easily show that the type system of LOOP is sound:

LEMMA 5.3 (TYPE SOUNDNESS) For any LOOP term e and environment F, if £ Froop € : T,
then F l=e:T.

As an obvious corollary to this lemma and Theorem 4.6 is

THEOREM 5.4 Well typed LOOP programs do not get stuck; i.e., for all LOOP programs e, if
Froop € : 7 for some type 7, then the SOOP program [e] does not get stuck.

To illustrate these ideas, the example LOOP program of Section 2.2 translated into SOOP is
shown below.

let Pointl = As.extend {linst = {|[}, meth={[}[} with {
inst = {x = ref 0f},
meth = {getx = Aa. !((1s).inst.x),
setx = An. set((1s).inst.x, n); (),
align = Ap. p.setx ((7s).meth.getx ()) [}}
in let Point2 = As.extend Pointl s with {|
inst={ly = ref 0f},
meth = {gety = Aa. !((]s).inst.y),
sety = An. set((]s).inst.y, n); (),
align2 = Ap. (]s).meth.align p; p.sety ((1s).meth.gety ()) [} [}
in let p1 = (let s be SAR to Point2 s).meth
in let p2 = (let s be SAR to Point2 s).meth
in pl.align2 p2

6 Conclusions

We give an operational interpretation of an object-oriented language with mutable instance vari-
ables, similar in flavor to the “wrapper semantics” of [CP89, Hen91], but in a strongly typed
framework. This requires the solution of two basic semantic problems: avoiding the reallocation of
instance variable cells resulting from an object’s self-reference (in the fixed point encoding), and
the type-correct extension of classes (based on the subtyping relation between object types). Both
are solved by the introduction of a new language construct: the single-assignment reference cell.

There are several obvious directions to extend this approach with different degrees of polymor-
phism. Adding Damas-Milner style polymorphism to the purely functional portion of the language
(restricting instance variables to have monomorphic types) is straightforward. More expressive
polymorphic systems, such as F-bounded quantification and various imperative type systems, will
likely require additional machinery.

Acknowledgement

We are grateful to an anonymous referee for several constructive comments and bringing related
work to our attention.

References

[BM92] K. Bruce and J. Mitchell. PER models of subtyping, recursive types and higher-order
polymorphism. In Conference Record of the Nineteenth Annual ACM Symposium on
Principles of Programming Languages, pages 316-327, 1992.

[Bru93] K. Bruce. Safe type checking in a statically-typed object-oriented programming lan-
guage. In Conference Record of the Twenltieth Annual ACM Symposium on Principles
of Programming Languages, pages 285-298, 1993.

[Car84] L. Cardelli. A semantics of multiple inheritance. In Semantics of Data Types, volume
173 of Lecture notes in Compuler Science, pages 51-67. Springer-Verlag, 1984.

[CCH*89] P. Canning, W. Cook, W. Hill, J. Mitchell, and W. Olthoff. F-bounded polymorphism
for object-oriented progrmming. In Proceedings of the Conference on Functional Pro-
gramming Languages and Compuler Archilecture, pages 273-280, 1989.

[CFI1] E. Crank and M. Felleisen. Parameter-passing and the lambda calculus. In Confer-
ence Record of the Fighteenth Annual ACM Symposium on Principles of Programming
Languages. ACM Press, 1991.

[CHC90] William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance is not subtyping.
In Conference Record of the Seventeenth Annual ACM Symposium on Principles of
Programming Languages. ACM Press, 1990.

[CP89] W. Cook and J. Parlsberg. A denotational semantics of inheritence and its correctness.
In OOPSLA ’89 Proceedings, pages 433-443, 1989.

[FH92] M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequential
control and state. Theoretical Computer Science, 102:235-271, 1992.

[GJ90]

[Hen91]

[Lan64]

[Mit90]

[MT91]

[Pie92]

[PT93]

[Red88]

[SCB+86]

[Wad92]

[Wan89]

[WF91]

J. Graver and R. Johnson. A type system for Smalltalk. In Conference Record of the
Seventeenth Annual ACM Symposium on Principles of Programming Languages, pages
125-135, 1990.

A. V. Hense. Wrapper semantics of an object-oriented programming language with
state. In Proceedings of the International Conference on Theoretical Aspects of Computer
Software, volume 526 of Lecture notes in Computer Science, pages 548-567. Springer-
Verlag, 1991.

P. J. Landin. The mechanical evaluation of expressions. Computer Journal, 6:308-320,
1964.

J. Mitchell. Towards a typed foundation for method specialization and inheritence.
In Conference Record of the Seventeenth Annual ACM Symposium on Principles of
Programming Languages, 1990.

I. A. Mason and C. L. Talcott. Equivalence in functional languages with effects. Journal
of Functional Programming, 1:287-327, 1991.

B. Pierce. Bounded quantification is undecidible. In Conference Record of the Nineteenth
Annual ACM Symposium on Principles of Programming Languages, pages 305-315,
1992.

B. Pierce and D. N. Turner. Object-oriented programming without recursive types. In
Conference Record of the Twentieth Annual ACM Symposium on Principles of Program-
ming Languages, pages 299-312, 1993.

U. S. Reddy. Objects as closures: Abstract semantics of object-oriented languages. In
Proceeding of the ACM Conference on Lisp and Functional Programming, pages 289—
297, 1988.

C. Schaffert, T. Cooper, B. Bullis, M. Kilian, and C. Wilpolt. An introduction to
Trellis/Owl. In Proceedings of OOPSLA Conference, pages 9-16, 1986.

P. Wadler. The essence of functional programming. In Conference Record of the Nine-
teenth Annual ACM Symposium on Principles of Programming Languages, pages 1-14,
1992.

Mitchell Wand. Type inference for record concatenation and multiple inheritance. In
Proceedings of the Fourth Annual IEEF Symposium on Logic in Computer Science, pages
92-97. IEEE, 1989.

A. Wright and M. Felleisen. A syntactic approach to type soundness. Technical Report
TRI1-160, Rice University Department of Computer Science, 1991. (revised June 1992).

