
Polyvariant Flow Analysis with Constrained Types

Scott F. Smith and Tiejun Wang?

Department of Computer Science
The Johns Hopkins University
Baltimore, MD 21218, USA
{scott,wtj}@cs.jhu.edu

Abstract. The basic idea behind improving the quality of a monovariant con-
trol flow analysis such as 0CFA is the concept ofpolyvariantanalyses such as
Agesen’s Cartesian Product Algorithm (CPA) and Shivers’nCFA. In this paper
we develop a novel framework for polyvariant flow analysis based on Aiken-
Wimmers constrained type theory. We develop instantiations of our framework
to formalize various polyvariant algorithms, includingnCFA and CPA. With our
CPA formalization, we show the call-graph based termination condition for CPA
will not always guarantee termination. We then develop a novel termination con-
dition and prove it indeed leads to a terminating algorithm. Additionally, we show
how data polymorphism can be modeled in the framework, by defining a simple
extension to CPA that incorporates data polymorphism.

1 Introduction

The basic idea behind improving the precision of a simple control flow analysis such
as 0CFA is the concept ofpolyvariantanalysis, also known asflow splitting. For bet-
ter analysis precision, the definition of a polymorphic function is re-analyzed multiple
times with respect to different application contexts. The original polyvariant generaliza-
tion of the monovariant 0CFA control flow algorithm is thenCFA algorithm, defined
by Shivers [17]. This generalization however has been shown to be not so effective: the
values ofn needed to obtain more accurate analyses are usually beyond the realm of the
easily computable, and even 1CFA can be quite slow to compute [19]. Better notions of
polyvariant analysis have been developed. In particular, Agesen’s CPA [1, 2] analyzes
programs with parametric polymorphism in an efficient and adaptive manner.

In this paper we develop a general framework for polyvariant flow analysis with
Aiken-Wimmers constrained types [3]. We represent each function definition with a
polymorphic constrained type scheme of form(∀ t . t → τ \ C). The subtyping con-
straint setC bound in the type scheme captures the flow corresponding to the function
body. Each re-analysis of the function is realized by a new instantiation of the type
scheme.

There have recently been several frameworks developed for polyvariant flow anal-
ysis, in terms of union and intersection types [16], abstract interpretation [13], flow
graphs [12], and more implementation-centric [10]. Our purpose in designing a new

? Partial funding provided by NSF grant CCR-9619843

framework is not primarily to give “yet another framework” for polyvariant flow analy-
sis, but to develop a framework particularly useful for the development of new polyvari-
ant analyses, and for improving on implementations of existing analyses. We will give
an example of a new analysis developed within the framework, Data-Adaptive CPA,
which extends CPA to incorporate data polymorphism. There also are implementation
advantages obtained by basing analyses on polymorphic constrained types. Compared
to the flow graph based approach used in other implementations of flow analyses [2, 10,
14], our framework has several advantages: using techniques described in [8, 15], con-
strained types can be simplified on-the-fly and garbage collection of unreachable con-
straints can be performed as well, leading to more efficient analyses; and, re-analysis
of a function in a different polyvariant context is also realized by instantiation of the
function’s constrained type scheme, and does not require re-analysis of the function
body.

This paper presents the first proposal to use constrained type schemes to model
polyvariance; there are several other related approaches in the literature. Palsberg and
Pavlopoulou [16] develop an elegant framework for polyvariant analyses in a type sys-
tem with union/intersection types and subtyping. There are also subtype-free type-based
realizations of polymorphism which can be adapted to polyvariant flow analysis. Let-
polymorphism is the classic form of polymorphism used in type inference for subtype-
free languages, and has been adapted to constrained types in [3, 7], as well as directly
in the flow analysis setting by Wright and Jagannathan [19]. Another representation of
polymorphism found in subtype-free languages is via rank-2 intersection types [11],
which has also been applied to polyvariant flow analysis [4]. The Church group has de-
veloped type systems of union/intersection types decorated with flow labels to indicate
the flow information [18].

The form of polyvariance we use is quite general: we show how CPA,nCFA, and
other analyses may be expressed in the framework. A∀ type is given to each function in
the program, and for every different call site and each different type of argument value
the function is applied to, a new contour (re-analysis of the function via instantiation
of the∀ type) is possible. The framework is flexible in how contours are generated: a
completely new contour can be assigned for an particular argument type applied to the
function, or for that argument type it can share a pre-existing contour. For example,
0CFA is the strategy which uses exactly one contour for every function.

One difficult problem for CPA is the issue of termination: without a termination
check, the analysis may loop forever on some programs, producing infinitely many con-
tours. We develop a termination condition which detects a certain kind of self-referential
flow in the constraints and prove that by merging some contours in this case, non-
termination is prevented and the analysis is implementable. Our termination condition
is different from the call-graph based condition commonly used in other algorithms,
which we show will not guarantee termination in all cases.

We also aim here to model polyvariant algorithms capable of handlingdata poly-
morphism: the ability of an imperative variable to hold values of different types at run-
time. Data polymorphism arises quite frequently in object-oriented programming, es-
pecially with container classes, and it poses special problems for flow analysis. The one
precise algorithm for detecting data polymorphism is the iterative flow analysis (IFA)

of Plevyak and Chien [14]. We present a simple non-iterative algorithm, Data-Adaptive
CPA, based on an approach distinct from that of IFA.

2 A Framework for Polyvariant Flow Analysis

This section presents the framework of polyvariant constrained type inference. In the
next section we instantiate the framework for particular analyses.

2.1 The Language

The language we study here is an extension to the language used in Palsberg and
Pavlopoulou’s union/intersection type framework for flow analysis [16], adding mu-
table state so we can model data polymorphism. We believe the concepts of current
paper should scale with relative ease to languages with records, objects, classes, and
other features, as illustrated in [7, 6].

Definition 21 (The language):

e = x | n | succ e | if0 e e e | λx.e | e e | new | e := e | !e | e ; e

This is a standard call-by-value lambda calculus extended with reference cells. Ex-
ecution of anew expression creates a fresh, uninitialized reference cell. We usenew
because it models the memory creation mode of languages like Java and C++, where
uninitialized references are routinely created. Recursive definitions may be constructed
in this language via theY -combinator.

2.2 The Types

Our basis is an Aiken-Wimmers-style constraint system [3]; in particular it is most
closely derived from the system described in [7], which combines constraints and mu-
table state.

Definition 22 (Types): The type grammar is as follows.

τ ∈ Type ::= t | τv | read t | write τ | t1 → t2
t ∈ TypeVar ⊃ ImpTypeVar
u ∈ ImpTypeVar
t ∈ TypeVarSet = Pfin(TypeVar)
τv ∈ ValueType ::= int | (∀ t . t → τ \ C) | ref u
τ1 <: τ2 ∈ Constraint
C ∈ ConstraintSet = Pω(Constraint)

The types for the most part are standard. Function uses (call sites) are given type
t1 → t2. ValueType are the types for data values.ref u is the type for a cell whose
content has typeu. We distinguish imperative type variablesu ∈ ImpTypeVar for
the presentation of data polymorphism. Read and write operations on reference cells
are represented with typesread t andwrite τ respectively. Functions are given poly-
morphic types(∀ t . t → τ \ C), wheret is the type variable for the formal argument,
τ is the return type,C is the set of constraints bound in this type scheme, andt is the
set of bound type variables. Such types are also referred as∀ types or closure types in
the paper.

(Var)
A(x) = t

A ` x : t \ {}

(Int)
A ` n : int \ {}

(Succ)
A ` e : τ \ C

A ` succ e : int \ {τ <: int} ∪ C

(If0)
A ` e1 : τ1 \ C1, e2 : τ2 \ C2, A ` e3 : τ3 \ C3

A ` if0 e1 e2 e3 : t \ {τ1 <: int, τ2 <: t, τ3 <: t} ∪ C1 ∪ C2 ∪ C3

(Abs)
A, {x : t} ` e : τ \ C

A ` λx.e : (∀ t . t → τ \ C) \ {}
wheret = FreeTypeVar(t → τ \ C)− FreeTypeVar(A)

(Appl)
A ` e1 : τ1 \ C1, e2 : τ2 \ C2

A ` e1 e2 : t2 \ {τ1 <: t1 → t2, τ2 <: t1} ∪ C1 ∪ C2

(New)
A ` new : ref u \ {}

(Read)
A ` e : τ \ C

A ` !e : t \ {τ <: read t}

(Write)
A ` e1 : τ1 \ C1, e2 : τ2 \ C2

A ` e1 := e2 : τ2 \ {τ1 <: write τ2} ∪ C1 ∪ C2

(Seq)
A ` e1 : τ1 \ C1, e2 : τ2 \ C2

A ` e1 ; e2 : τ2 \ C1 ∪ C2

Fig. 1.Type inference rules

2.3 The Type Inference Rules

We present the type inference rules in Figure 1. A type environmentA is a mapping
from program variables to type variables. Given a type environmentA, the proof system
assigns a type to expressione via the type judgmentA ` e : τ \ C, whereτ is
the type fore, andC is the set of constraints which models the flow paths ine. We
abbreviateA ` e : τ \ C as ` e : τ \ C when A is empty. The rules are
deterministic except that nondeterminism may arise in the choice of type variables. We
restrict type derivations to be of a form where fresh type variables are used whenever
it is possible. With this restriction, type inference is trivially decidable and is unique
modulo choice of type variable names.

Definition 23 (Type inference algorithm): For closed expressione, its inferred type
is τ \ C provided ` e : τ \ C.

The intuition behind those inference rules is that a subtyping constraintτ1 <: τ2

indicates a potential flow from expressions of typeτ1 to expressions of typeτ2. The
rules generally follow standard presentations of Aiken-Wimmer constrained type sys-
tem, except for the (Abs) and cell typing rules. Detailed descriptions of other rules
could be found in [7, 3]. The (Abs) rule assigns each function a polymorphic type
(∀ t . t → τ \ C). In this rule,FreeTypeVar(·) is a function that extracts free type
variables,t collects all the type variables generated when the inference is applied to the

function body, andC collects all the constraints corresponding to the function body.
The manner in which∀ type schemes are formed is similar to standard polymorphic
constrained type systems, but the significant difference here is that every function is
given a∀ type. By contrast, in a system based on let-polymorphism, thelet construct
dictates where∀ types are introduced.

The (New) rule assigns the reference cell typeref u, with u, the type of the cell
content, initially unconstrained. In the (Read) rule,read t is the type for a cell whose
read result is of typet. In the (Write) rule,write τ2 is the type for a cell assigned with
a value of typeτ2.

We take an intensional view of types: two types are equivalent if and only if they are
syntactically identical. In particular,∀ types corresponding to different functions in the
program are always different, even though they might beα-variants. This is because we
wish to distinguish different functions in the analysis to obtain precise flow properties.
For type soundness properties, an extensional view could be taken.

We illustrate the inference rules with the example studied in [16]:

E1 ≡ (λf.succ ((f f) 0) (if0 n (λx.x) (λy.λz.z))

To ease presentation, each program variable is inferred with a type variable having
exactly the same name. We have
` (λf.succ ((f f) 0) : τf\{}, whereτf ≡ (∀ {f, t1, t2, t3, t4}.f → int \ {f <:
t1 → t2, f <: t1, t2 <: t3 → t4, int <: t3, t4 <: int}),
` (λx.x) : τx\{}, whereτx ≡ (∀ {x}.x → x\{}),
` (λy.λz.z) : τy\{}, whereτy ≡ (∀ {y}.y → (∀ {z}.z → z\{})\{}).
` E1 : t7 \ {int <: int, τx <: t5, τy <: t5, τf <: t6 → t7, t5 <: t6}

2.4 Computation of the Closure

The inference algorithm applied to programe results in a type judgment̀ e : τ \ C.
For a flow analysis, we need to generate all the possible data-flow and control-flow paths
and propagate value types along all the data-flow paths. This is achieved by applying
the closure rules of Figure 2 toC, propagating information via deduction rules on the
subtyping constraints.

The rule (Trans) is the transitivity rule which models run-time data flow by propa-
gating value types forward along flow paths. The (Read) closure rule applies when a
read operation is applied on a cell of typeref u, and the reading result is of typet. By
constraintu <: t, the cell content flows to the reading result. The (Write) closure rule
applies when a write operation is applied on a cell of typeref u, and a value of typeτ
is assigned to the cell. By constraintτ <: t, the value flows to the content of the cell.
With (Read) and (Write) rules together, any value assigned to a cell flows to the cell’s
reading result. Flanagan [9] uses a related set of rules for references and was the source
of the idea for us.

The most important closure rule is (Fun), which performs∀ elimination. The con-
straint(∀ t . t → τ \ C) <: t1 → t2 indicates a function flowing to a call site, where
(∀ t . t → τ \ C) is the type for the function andt1 → t2 is the type representing the
call site. The constraintτv <: t1 means that a value of typeτv flows in as the actual

(Trans)
τv <: t, t <: τ

τv <: τ

(Fun)
(∀ t . t → τ \ C) <: t1 → t2, τv <: t1
τv <: Θ(t), Θ(τ) <: t2, Θ(C)

whereΘ = Poly((∀ t . t → τ \ C) <: t1 → t2, τv)

(Read)
ref u <: read t

u <: t

(Write)
ref u <: write τ

τ <: u

Fig. 2.Constraint Closure rules

argument. At run-time, upon each function application, all local variables of the func-
tion are allocated fresh locations on the stack. To model this behaviour in the analysis,
a renamingΘ ∈ TypeVar

p→ TypeVar is applied to type variables int . The partial
function Θ is extended to types, constraints, and constraint sets in the usual manner.
Θ(t) for t 6∈ t is defined to returnt. We callΘ(τ) an instantiationof τ . Following the
terminology of Shivers’nCFA [17], we call a renamingΘ acontour. The∀ is eliminated
from (∀ t . t → τ \ C) by applyingΘ to C. The (Fun) rule then generates additional
constraints to capture the flow from the actual argumentτv to the formal argumentΘ(t),
and from the return valueΘ(τ) to the application resultt2. The (Fun) rule is parameter-
ized by functionPoly ∈ Constraint×ValueType → (TypeVar

p→ TypeVar),
which decides for this particular function, call site, and actual argument type, which
contour is to be used (i.e., created or reused). Providing a concretePoly instantiates the
framework to give a concrete algorithm. For example, the monovariant analysis 0CFA
is defined by lettingPoly always return the identity renaming. This particular example
shows howPoly may reuse existing contours. The differing analyses are defined by
differing Poly which use different strategies for sharing contours. In the next section
we show how this works by presenting some particularPoly.

Definition 24 (Closure): For a constraint setC, ClosurePoly(C) is the least superset
of C closed under the closure rules of Figure 2.

This closure is well-defined since the rules can be seen to induce a monotone func-
tion on constraint sets. By this definition, somePoly may produce infinite closures
since infinitely many contours may be created. Such analyses are still worthy of study
even though they are usually unimplementable.

Definition 25 (Flow Analysis): DefineAnalysisPoly(e) = ClosurePoly(C), where the
inference algorithm infers̀ e : τ \ C.

The output of an analysis is a set of constraints, which is the closure of the constraint
set generated by the inference rules. The closure contains complete flow information
about the program, various program properties can be deduced from it.

Definition 26 (Type-Checking): A programe is well-typed iff AnalysisPoly(e) con-
tains no immediately type-contradictory constraints such asref u <: t → t′.

For example, analyzing programsucc (λx.x) would generate a type-contradictory
constraint(∀ {x}.x → x\{}) <: int, which indicates an type error. A computation
state iswrong if computation cannot continue due to a type error. Our type system does
not statically check for errors due to reading uninitialized cells.

To illustrate how the results of a conventional control flow analysis can be obtained
in our framework, we use the fact that by the structure of the inference rules, every∀
type in the closure corresponds to a unique lambda abstraction in the program.

Definition 27 (Control Flow Analysis): For an expressione in the program, ife is
assigned with typeτ by the inference rules, the function corresponding to(∀ t ′. t′ →
τ ′ \ C ′) is considered flowing toe, if either τ = (∀ t ′. t′ → τ ′ \ C ′) or (∀ t ′. t′ →
τ ′ \ C ′) <: t ∈ AnalysisPoly(e), and eitherτ = t or t is an instantiation ofτ .

The above definition includes two cases: eithere is directly assigned with a∀ type,
in this casee is a lambda abstraction which trivially flows to itself; ore is assigned with
a type variable by the inference rules, and the type variable or an instantiation of it has
a∀ type as lower bound.

A subject reduction property for our type system can be established, with a proof
similar to the one in [7]. The subject reduction property implies the type soundness and
flow soundness of the framework.

Theorem 28 (Subject Reduction, Type Soundness, Flow Soundness):1. The type
system has a subject reduction property;

2. A well-typed programe cannot gowrongduring execution;
3. If an expression evaluates to a closure value of a function, the function is considered

flowing to the expression by the the control flow analysis.

The soundness of the framework implies that any analysis defined as an instantiation
of the framework is also sound.

3 Instantiating the Framework

In this section we present various polyvariant algorithms as instantiations of our frame-
work.

3.1 nCFA Instantiation

In Shivers’nCFA analysis [17], each function application (call) is associated with a
call-string of length at mostn. The call-string contains the lastn or fewer calls on
the call-path leading to this application. Applications of the same function share the
same contour (i.e., analysis of the function) if they have the same call-string. To present
nCFA in our framework, type variables are defined with superscripts that denote the
call-string:

α ∈ Identifier
s ∈ Superscript = Identifier List
t ∈ TypeVar ::= αs

We use the following list notation: The empty list is[], [α1, . . . , αm] is a list of m
elements,l1 @ l2 appends listsl1 and l2, andl(1..n) is the list consisting of the first

min(n, length(l)) elements of listl. Each type variableαs is tagged with a call-string
s. All type variables generated by the inference rules have empty lists as superscripts.
By the inference rule (Appl), a call site is inferred with a typeα

[]
1 → α

[]
2 , we useα2

to identify this call site, thus a call-string is a list of such identifiers. All bound type
variables of a∀ type have empty list superscripts. When the∀ quantifier is eliminated
by the (Fun) closure rule, those bound type variables are renamed by changing the
superscripts from empty lists to the appropriate call-strings.

Definition 31 (nCFA Algorithm): ThenCFA algorithm is defined as the instantiation
of the framework withPoly = CFA, where

CFA((∀ t . t → τ \ C) <: t1 → αs2
2 , τv) = Θ, where for eachα[] ∈ t ,

Θ(α[]) = αs′
, wheres′ = ([α2] @ s2)(1..n)

It can be shown by induction thats′ is the call-string for application(∀ t . t →
τ \ C) <: t1 → αs2

2 . The definition ofΘ ensures that applications of the same function
share the same contour if and only if they have the same call-string.

Not only is nCFA inefficient, but even for largen it may be imprecise. Applying
nCFA to programE1, since(λf . . .) has only one application, the (Fun) rule generates
only one contourΘ for this function, resulting inτx <: Θ(f) andτy <: Θ(f). This
means both(λx.x) and(λy.λz.z) flow to f , and at the application sitef f there are
four applications. One of them,(λx.x) applying to(λy.λz.z) leads to a type error:
(∀ {z}.z → z\{}) <: int. HencenCFA fails to type-checkE1 for arbitraryn.

3.2 Idealized CPA

The Cartesian Product Algorithm (CPA) [1, 2] is a concrete type inference algorithm
for object-oriented languages. For a message sending expression, CPA computes the
cartesian product of the types for the actual arguments. For each element of the cartesian
product, the method body is analyzed exactly once with one contour generated. The
calling-contexts of a method are partitioned by the cartesian product, rather than by
call-strings as innCFA. In our language, each function has only one argument. For
each function, CPA generates exactly one contour for each distinct argument type that
the function may be applied to. Without a termination check, CPA may fail to terminate
for some programs. We first present an idealized CPA which may produce an infinite
closure, and in Section 5 show how a terminating CPA analysis may be defined which
keeps the closure finite. To present CPA, type variables are defined with structure:

α ∈ Identifier
t ∈ TypeVar ::= α | ατv

The inference rules are constrained to generate type variables without superscripts.

Definition 32 (Idealized CPA algorithm): The Idealized CPA algorithm is the instan-
tiation of the framework withPoly = CPA, where

CPA((∀ t . t → τ \ C) <: t1 → t2, τv) = Θ, where for eachα ∈ t , Θ(α) = ατv

The contoursΘ are generated based on the actual argument typeτv , independent of
the application sitet1 → t2. This is the opposite ofCFA, which ignores the value type

τv , and only uses the call sitet1 → t2. Given a particular function and its associated
∀ type in a program, this algorithm will generate a unique contour (∀ elimination) for
each distinct value type the function is applied to. It however may share contours across
call sites. Agesen [2] presents convincing experimental evidence that the CPA approach
is both more efficient and more feasible thannCFA.

We now sketch what Idealized CPA will produce when applied to programE1. Even
though there is only one application site for(λf . . .), it applies to two different actual
argument values. So, the (Fun) rule generates two contoursΘ1 andΘ2 for (λf . . .) with
Θ1(f) = fτx , τx <: fτx , Θ2(f) = fτy , τy <: fτy . At application sitef f , there would
be only two applications:(λx.x) applying to itself and(λy.λz.z) applying to itself.
Thus the program is type-checked successfully.

4 Data Polymorphism

Data polymorphism is defined informally in [2] as the ability of an imperative program
variable to hold values of different types at run-time. In our language, a more precise
definition could be that cells created from a single imperative creation point (new ex-
pression) in the program could be assigned with run-time values of different types. CPA
addresses parametric polymorphism effectively, but may lose precision in the presence
of data polymorphism. For example, consider when CPA is applied to the program

E2 ≡ (λf.(λx. x := 0; succ !x)(f 1); (f 2) := (λy.y)) (λz.new)

Function(λy.y) has type(∀ {y}.y → y\{}), and(λz.new) has type(∀ {z, u}.z →
ref u\{}). The two applications of(λz.new) have same actual argument typeint,
so one contourΘ is shared by the two applications. At run-time the two applications
return two distinct cells, but in CPA closure, the two cells share typeref u′ (assume
Θ(u) = u′), since there is only one contour for(λz.new). At run-time, one cell is
assigned with0, and the other is assigned with(λy.y). The two assignments are both
reflected onu′ as constraintsint <: u′ and (∀ {y}.y → y\{}) <: u′, as if there
were only one cell, which is assigned with values of two different types. This leads to
a type error:(∀ {y}.y → y\{}) <: int. But if distinct contours were used for the two
applications of(λz.new), the two cells would have separate cell types and the program
would be type-checked.

This small example illustrates that data polymorphism is a problem that arises in a
function that contains a creation point (anew expression). Different applications of the
function may create different cells which are assigned with values of different types, a
precise analysis should disambiguate these cells by letting them have separate cell types.
To illustrate how data polymorphism can be modeled in our framework, we present a
refinement of CPA to give better precision in the analysis of data polymorphic programs.

Consider two applications of a single function. If the applications have same ac-
tual argument type, then CPA generates a single contour for them. But, if the two ap-
plications return separate mutable data structures at run-time, and the data structures
are modified differently after being returned from the two different applications, CPA
would lose precision by merging the data structures together. If two separate contours
were used for the two applications, the imprecision could be avoided. In the result

of CPA analysis, such a function has a return type which is a mutable data structure
with polymorphic contents. We call such functionsdata-polymorphic. In programE2,
(λz.new) is data-polymorphic, and the other functions are data-monomorphic.

Based on the above observation, our Data-Adaptive CPA algorithm is a two-pass
analysis. The first pass is just CPA. From the CPA closure, we detect a set of func-
tions which are possibly data-polymorphic. In the second pass, for data-polymorphic
functions, a distinct contour is generated foreveryfunction application. In this way, im-
precision associated with data-polymorphic functions can be avoided; only CPA split-
ting is performed for data-monomorphic functions, avoiding generation of redundant
contours.

Mutable data structures with polymorphic contents are detected from the CPA clo-
sure with following definition:

Definition 41 (Data Polymorphic Types): Type τ is data-polymorphic in constraint
setC if any of the following cases hold:

1. τ = ref u, τv1 <: u ∈ C, τv2 <: u ∈ C, andτv1 6= τv2;
2. τ is type variablet, τ ′ <: t ∈ C, andτ ′ is data-polymorphic inC;
3. τ = ref u andu is data-polymorphic inC;
4. τ = (∀ t ′. t′ → τ ′ \ C ′) andτ ′ is data-polymorphic inC.

The above definition is inductive. The first case is the base case, detecting cell
types with polymorphic contents. The second case declares a type variable as data-
polymorphic when it has a data polymorphic lower bound. The remaining two cases
are inductive cases based on the idea that a type is data-polymorphic if it has a data-
polymorphic component. Particularly, a closure type is declared as data-polymorphic
when the type of its return value is data-polymorphic. Note that, for purely functional
programs with no usage of cells, no types would be detected as data-polymorphic.

Recall that CPA type variables are either of the formα or ατv . We define an oper-
ation erase on type variables as:erase(α) = α, erase(ατv) = α. And we extend it
naturally to types, definingerase(τ) as the type with all superscripts erased from all
type variables inτ . In particular,erase maps a closure type to the type for the lambda
abstraction in the program corresponding to the closure type, and it maps a cell type
to the type for the corresponding creation point (new expression) in the program. From
now on, we callτv an instantiationof erase(τv).

Definition 42 (Data Polymorphic Functions): For functionλx.e assigned with type
(∀ t . t → τ \ C) by the inference rules,λx.e is a data-polymorphic function in
constraint setC ′ iff there appearsτ ′ in C ′ s.t.erase(τ ′) = τ andτ ′ is data-polymorphic
in C ′.

In the above definition we use the fact that every distinct function in the program
is given a unique type(∀ t . t → τ \ C) by the inference rules. The constraint set
C ′ is a flow analysis result of the program. The conditionerase(τ ′) = τ means that
the functionλx.e may return a value of typeτ ′. Sinceτ ′ is data-polymorphic inC ′,
we know that, according to analysis resultC ′, the function may return mutable data
structures with polymorphic contents, and we declare it as a data-polymorphic function.

Definition 43 (Data-Adaptive CPA): For programe, Data-Adaptive CPA is an instan-
tiation of the framework withPoly = DCPA, where

DCPA((∀ t . t → τ \ C) <: t1 → t2, τv) = Θ, where for eachα ∈ t ,

Θ(α) =

8><>:
α′ whereα′ is a fresh identifier, if erase(∀ t . t → τ \ C) is type for

a data-polymorphic function inAnalysisCPA(e)

ατv otherwise

The second pass of Data-Adaptive CPA differs from CPA only when the function is
detected as data polymorphic in the closure obtained by the first CPA pass. In this case, a
new contour is always generated for every application. We now illustrate Data-Adaptive
CPA on programE2. After the first CPA pass, we have

int <: u′, (∀ {y}.y → y\{}) <: u′) ∈ AnalysisCPA(E2)

Thusu′ is data-polymorphic, and so isref u′. Sinceλz.new is inferred with type
(∀ {z, u}.z → ref u\{}) anderase(ref u′) = ref u, λz.new is a data-polymorphic
function. In the second pass, the two applications ofλz.new have separate contours, and
the program type-checks.

We briefly sketch how Data-Adaptive CPA could be applied to data polymorphism
in object-oriented programming. We illustrate the ideas by assuming an encoding of
instance variables as cells, objects as records (which we expect can be added to our
language without great difficulty), classes as class functions, and object creation as
application of class functions. An example of such an encoding is presented in [7].

Consider applying such an encoding to the Java program fragment of Figure 3:
The twonew Box() expressions would be encoded as two applications of the class

class Box {

public Object content;

public void set(Object obj) {

content=obj;

}

public Object get() {

return content;

}

}

...

Box box1=new Box(); box1.set(new Integer(0));

Box box2=new Box(); box2.set(new Boolean(true));

... box1.get() ...

Fig. 3.Java program exhibiting the need for data polymorphism

function for classBox. When CPA is applied, since the two applications always apply
to arguments of same type in any object encoding, the two applications share a single
contour. Thus the twoBox instances share a same object type, and the analysis would

imprecisely conclude that the result ofbox1.get() includes object typeBoolean.
When Data-Adaptive CPA is applied, from the closure of the first CPA pass, the instance
variablecontent would be detected as being associated with a data-polymorphic cell
type. Since the class function for classBox returns a object value withcontent as
a component, the class function would be detected as a data-polymorphic function.
During the second pass, the two applications of the class function would have separate
contours, thus the two instances ofBox would have separate types and the imprecision
would be avoided.

For programs with much data polymorphism, Data-Adaptive CPA may become im-
practical as many functions are detected as data-polymorphic. Similar to Agesen’s CPA
implementation [2], a practical implementation should restrict the number of contours
generated.

Plevyak and Chien’s iterative flow analysis (IFA) [14] uses an iterative approach for
precise analysis of data polymorphic programs. The first pass analyzes the program by
letting objects of the same class share the same object contour. Every pass detects a set
of confluence points (imprecise flow graph nodes where different data values merge)
based on the result of the previous pass, and generates more contours with aim to re-
solve the imprecision at confluence points. The iteration continues until a fixed-point is
reached. The advantage of IFA is that splitting is performed only when it is profitable,
yet every pass is a whole-program analysis and the number of passes needed could be
large. Use of declarative parametric polymorphism [5] to guide the analysis of data
polymorphism could be a completely different approach that also could be considered.

5 Terminating CPA Analyses

Any instantiation of our polyvariant framework terminates when only finitely many dis-
tinct contours are generated. ThenCFA algorithms we defined terminate for arbitrary
programs since the number of call-strings of length no more thann is finite. Unfortu-
nately, the Idealized CPA and Data-Adaptive CPA algorithms fail to terminate for some
programs.

Agesen [2] develops various methods to detect recursion and avoid the generation
of infinitely many contours over recursive functions in his CPA implementation. One
approach is to construct a call-graph during analysis, and restrict the number of contours
generated along a cycle in the call-graph. However, for Idealized CPA, adding call-
graph cycle detection is not enough to ensure termination. Consider the program

E3 ≡ (λc. c := λx.x; (λd. c := (λy. d y)) !c) new

Its call-graph has only one edge: function(λc . . .) calls (λd . . .). There is no cycle in
it. Consider running Idealized CPA on the program. For each value type lower bound of
of u (assume the cell has typeref u), there is a contour generated for function(λd . . .).
At first the type forf0 = (λx.x) becomes a lower bound ofu, one contour is generated
for function (λd . . .), and the type for closuref1 = (λy.f0 y) becomes another lower
bound ofu. So another contour is generated for(λd . . .), and the type for closuref2 =
(λy.f1 y) also becomes a lower bound ofu. This process would repeat forever, with an
infinite number of contours generated for function(λd . . .). This example shows that
call-graph based approach cannot ensure the termination of Idealized CPA.

Here we present a novel approach that ensures the termination of CPA for arbitrary
programs. Our approach is based on the following observation: when Idealized CPA
fails to terminate for a program, there must be a cyclic dependency relation among
those functions having infinitely many contours. In the example, there exists such a
cyclic relation: function(λy . . .) is lexically enclosed by(λd . . .), and(λd . . .) applies
to closure values corresponding to(λy . . .). If we detect such cycles and restrict the
number of contours generated for functions appearing in cycles, non-termination could
be avoided. To be precise, the key of our method is to construct a relation among value
types during closure computation. This relation is defined as:

Definition 51 (Flow Dependency,⇒): For constraint setC, define⇒ as a relation
among value types such that if either

τv1 <: t → t′, τv2 <: t ∈ C, τv1 = (∀ t1. t1 → τ1 \ C1)

or

τv1 occurs as a subterm of(∀ t2. t2 → τ2 \ C2), τv2 = (∀ t2. t2 → τ2 \ C2), τv1 6= τv2,
and there exists at ∈ t2 such thatt appears inτv1

holds, thenerase(τv1) ⇒ erase(τv2) in C.

The first case above defines a dependency when closure typeτv1 applies to value
typeτv2. The second case defines a dependency when closure typeτv2 contains value
typeτv1 as a subterm, so that when a new contour is generated for closure typeτv2, a
new value type is created which isτv1 with some of its free type variables renamed. If
τv1 ⇒ τv2 in C1, andC1 ⊆ C2, we haveτv1 ⇒ τv2 in C2. Thus relation⇒ could be
incrementally computed along with the incremental closure computation. We abbreviate
τv1 ⇒ τv2 in C asτv1 ⇒ τv2 whenC refers to the current closure under computation.
We call τv1 ⇒ τv2, . . . , τvn ⇒ τv1 a cycle, and we writeτv1

∗⇒ τvn if there exists a
sequenceτv1 ⇒ τv2, . . . , τvn−1 ⇒ τvn.

Definition 52 (Terminating CPA): Terminating CPA is the instantiation of the frame-
work obtained by definingPoly as:

Poly((∀ t . t → τ \ C) <: t1 → t2, τv
′) = Θ, where for eachα ∈ t ,

Θ(α) =

(
αerase(τv′) if erase(τv ′)

∗⇒ erase((∀ t . t → τ \ C))

ατv′
otherwise

The new algorithm differs from Idealized CPA in just one case: when a closure of
type (∀ t . t → τ \ C) is applied to argument typeτv ′ and we haveerase(τv ′) ∗⇒
erase((∀ t . t → τ \ C)) in the current closure, then by the definition of⇒, there
would be a cycle:erase(τv ′) ∗⇒ erase((∀ t . t → τ \ C)) ⇒ erase(τv ′). In this
case, instead of renaming type variables int as in Idealized CPA, they are renamed to
a form only dependent onerase(τv ′). In this way, even if(∀ t . t → τ \ C) applies to
different types which are different instantiations oferase(τv ′), there is only one contour
generated for them. We will prove shortly that this will ensure termination of the closure
computation.

Applying the algorithm to exampleE3, suppose that, by the inference rule (Abs),
function(λd . . .) has typeτd and function(λy . . .) has typeτy. Since(λd . . .) lexically

encloses(λy . . .), we haveτy ⇒ τd; and, since(λd . . .) applies to closures of(λy . . .),
we also haveτd ⇒ τy. Thus a cycle is detected, only two contours are generated for
(λd . . .), and the algorithm terminates.

Theorem 53 (Termination): The Terminating CPA analysis terminates for arbitrary
programs.

Proof: Suppose not,i.e., for some program, its Terminating CPA closureC contains
a ∀ type τv0 which has an infinite number of contours. Then, there must exist at least
oneτv1 s.t. τv0 takes as arguments an infinite number of instantiations oferase(τv1),
and an infinite number of contours are generated for those applications. To have an
infinite number of instantiations oferase(τv1), there must exist a∀ type τv2 s.t. τv2

containserase(τv1) as a sub-term, every new contour ofτv2 causes the generation of a
new instantiation oferase(τv1), andτv2 has an infinite number of contours. Repeating
this process gives an infinite sequenceerase(τv0), erase(τv1), . . . erase(τvi) . . . where
for eachi, τv2∗i has infinite number of contours when applying to instantiations of
erase(τv2∗i+1), anderase(τvi) ⇒ erase(τvi+1). Since the program is finite, there are
finitely manyerase(τv) and there must be a cycle in the sequence. Thus, there existsj

s.t.erase(τv2∗j) ⇒ erase(τv2∗j+1)
∗⇒ erase(τv2∗j) andτv2∗j has an infinite number

of contours for applying to instantiations oferase(τv2∗j+1). But, by the definition of
Poly for Terminating CPA, this is impossible. 2

A terminating Data-Adaptive CPA analysis can be similarly defined except that,
besides cycles in the Flow Dependency relation, cycles in call-graph also need to be
detected.

6 Conclusions

We have defined a polymorphic constrained type-based framework for polyvariant flow
analysis. Some particular contributions include: showing how a type system with para-
metric polymorphism may be used to model polyvariance as well as data polymor-
phism; modelingnCFA and CPA in our framework; a refinement of CPA in the pres-
ence of data polymorphism; and, an approach to ensure the termination of CPA-style
analyses.

Acknowledgements

We would like to thank the anonymous referees for their helpful comments.

References

1. Ole Agesen. The cartesian product algorithm. InProceedings ECOOP’95, volume 952 of
Lecture notes in Computer Science, 1995.

2. Ole Agesen.Concrete Type Inference: Delivering Object-Oriented Applications.PhD thesis,
Stanford University, 1996. Available as Sun Labs Technical Report SMLI TR-96-52.

3. A. Aiken and E. L. Wimmers. Type inclusion constraints and type inference. InProceed-
ings of the International Conference on Functional Programming Languages and Computer
Architecture, pages 31–41, 1993.

4. Anindya Bannerjee. A modular, polyvariant, and type-based closure analysis. InInterna-
tional Conference on Functional Programming, 1997.

5. Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the future
safe for the past: Adding genericity to the Java programming language. InProceedings of
the 13th Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA-98), volume 33, 10 ofACM SIGPLAN Notices, pages 183–200, New York,
October 18–22 1998. ACM Press.

6. Jonathan Eifrig, Scott Smith, and Valery Trifonov. Sound polymorphic type inference for
objects. InOOPSLA ’95, pages 169–184, 1995.

7. Jonathan Eifrig, Scott Smith, and Valery Trifonov. Type inference for recursively constrained
types and its application to OOP. InProceedings of the 1995 Mathematical Foundations of
Programming Semantics Conference, volume 1 ofElectronic Notes in Theoretical Computer
Science. Elsevier, 1995. http://www.elsevier.nl/locate/entcs/volume1.html.

8. Cormac Flanagan and Matthias Felleisen. Componential set-based analysis. InProceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI-97), volume 32, 5 ofACM SIGPLAN Notices, pages 235–248, New York, June 15–18
1997. ACM Press.

9. Cormac Flanagan.Effective Static Debugging via Componential Set-Based Analysis. PhD
thesis, Rice University, 1997.

10. David Grove, Greg DeFouw, Jerey Dean, and Craig Chambers. Call graph construction in
object-oriented languages. InACM Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), 1997.

11. Trevor Jim. What are principal typings and what are they good for? InConference Record of
the Twenty-Third Annual ACM Symposium on Principles of Programming Languages, 1996.

12. Suresh Jagannathan and Stephen Weeks. A unified treatment of flow analysis in higher-
order languages. InConference Record of the Twenty-Second Annual ACM Symposium on
Principles of Programming Languages, pages 393–408, 1995.

13. Flemming Nielson and Hanne Riis Nielson. Infinitary control flow analysis: A collecting
semantics for closure analysis. InConference Record of the Twenty-Fourth Annual ACM
Symposium on Principles of Programming Languages, pages 332–345, 1997.

14. John Plevyak and Andrew Chien. Precise concrete type inference for object-oriented lan-
guages. InProceedings of the Ninth Annual ACM Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, pages 324–340, 1994.

15. François Pottier. A framework for type inference with subtyping. InProceedings of the ACM
SIGPLAN International Conference on Functional Programming (ICFP ’98), volume 34(1)
of ACM SIGPLAN Notices, pages 228–238. ACM, June 1999.

16. Jens Palsberg and Christina Pavlopoulou. From polyvariant flow information to intersection
and union types. InProceedings of 25th Annual SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL’98), pages 197–208, 1998.

17. Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, Carnegie-
Mellon University, 1991. Available as CMU Technical Report CMU-CS-91-145.

18. J. B. Wells, Allyn Dimock, Robert Muller, and Franklyn Turbak. A typed intermediate
language for flow-directed compilation. InTheory and Practice of Software Development
(TAPSOFT), number 1214 in Lecture notes in Computer Science. Springer-Verlag, 1997.

19. Andrew K. Wright and Suresh Jagannathan. Polymorphic splitting: an effective polyvariant
flow analysis.ACM Transactions on Programming Languages and Systems, 20(1):166–207,
January 1998.

