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Abstract. Precise type information is invaluable for analysis and op-
timization of object-oriented programs. Some forms of polymorphism
found in object-oriented languages pose significant difficulty for type in-
ference, in particular data polymorphism. Agesen’s Cartesian Product Al-
gorithm (CPA) can analyze programs with parametric polymorphism in a
reasonably precise and efficient manner, but CPA loses precision for pro-
grams with data polymorphism. This paper presents a precise constraint-
based type inference system for Java. It uses Data-Polymorphic CPA
(DCPA), a novel constraint-based type inference algorithm which ex-
tends CPA with the ability to accurately and efficiently analyze data
polymorphic programs. The system is implemented for the full Java lan-
guage, and is used to statically verify the correctness of Java downcasts.
Benchmark results are given which show that DCPA is significantly more
accurate than CPA and the efficiency of DCPA is close to CPA.

1 Introduction

A concrete type inference (also known as a concrete class analysis) is an analysis
which infers a set of classes for each expression, representing a conservative ap-
proximation of the classes of objects the expression may evaluate to at run-time.
Such an analysis is vital for many applications, including call-graph construc-
tion [GDDC97, TP00], static resolution of virtual method calls [SHR+00], static
verification of type casts, application extraction from libraries [Age96, TLSS99],
and various whole program optimizations.

The constraint-based type inference [AW93, EST95] is an effective method
whereby a concrete class analysis can be implemented. In constraint-based type
inference, subtyping constraints are used to capture the flow information of a
program. Type constraints are a more algebraic representation of the flow in-
formation, and algebraic manipulations allow for optimizations which lead to
more efficient and effective analyses [AFFS98, Pot98, FF97, EST95]. This paper
focuses on the construction of a precise constraint-based type inference system
for Java.
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Polymorphism is widespread in object-oriented programs, and so an accurate
analysis must be appropriately polymorphic. For example, a method may apply
to arguments of different types, and objects of the same class may have fields
assigned with values of different types. A monomorphic type inference algorithm
such as 0CFA [Shi91] analyzes each method at the same type across different
call sites, and lets all objects created from the same class share the same type,
resulting in a significant precision loss on polymorphic programs. A polymorphic
analysis is thus needed. But, polymorphic inference is a difficult issue due to
subtle trade-offs between expressiveness and efficiency. An expressive algorithm
could re-analyze the method for every different method invocation, but this
would be very inefficient. The cartesian product algorithm (CPA) [Age95, Age96]
addresses this problem, analyzing programs with parametric polymorphism in a
manner that makes a reasonable trade-off between expressiveness and efficiency.
The basic idea of CPA is to partition the calling context of a method based on
the types of the actual arguments passed to the method. If the method is passed
arguments of different types at two different invocations, those two different call
sites are given different copies of the method type (i.e., different contours). And,
if the method is invoked on arguments of the same types at two different call
sites, those two invocations can efficiently share a contour of the method.

In some cases, an object field can be assigned values of different types, and
different objects created from the same class can behave differently. This form of
polymorphism is called data polymorphism. Data polymorphism occurs quite fre-
quently in object-oriented programs, in particular when generic container classes
are used. For example, there might be two instances of java.util.Vector cre-
ated, and the two vectors could contain objects of different types. Since CPA
uses a single object type for all objects created from the same class, it loses
precision in this case. Here we present a novel type inference algorithm, Data-
Polymorphic CPA (DCPA), which extends CPA with the ability to precisely
analyze data-polymorphic programs.

We have constructed a prototype implementation of a constraint-based type
inference system for the Java language. Several analyses are implemented, in-
cluding 0CFA, CPA, and DCPA. The system is used as a tool to statically
check whether Java type-casts in a program will always succeed at run-time.
Cast-checking is a good test of the accuracy of an analysis, since each cast by
definition is beyond the Java type system and so represents a more challenging
type inference question. DCPA shows good results on benchmark tests: nearly
all casts which could be verified statically by a flow-insensitive analysis have
been verified by our DCPA implementation. DCPA is shown to be substantially
more precise than CPA on Java programs, and to have an efficiency comparable
to CPA.

The paper makes several other contributions. We define a generic framework
for object-oriented constraint-based type inference that can model parametric
polymorphism as well as data polymorphism. This is an object-oriented version
of a framework we defined for a functional language with state in [SW00]. We
implement 0CFA, CPA and DCPA for the full Java language and get good per-
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formance. We also make a series of implementation optimizations to gain a more
efficient analysis, including a novel version of the cycle elimination [AFFS98].

2 A Framework for Object-Oriented Constraint Inference

In this section we present a framework for polyvariant constraint-based type
inference for objects. It recasts the functional polyvariant framework of [SW00]
to handle object-oriented language features. We show how 0CFA and CPA can be
expressed as instantiations of the framework. Other frameworks for polyvariant
analysis have been proposed, including [PP98, JW95].

2.1 The Types

Our type system is based on Aiken-Wimmers-style set constraints [AW93]. The
types are close to those described in [EST95], which gives set constraints for
an object-oriented language. The aforecited paper presents constraints for a toy
object-oriented language, I-Loop, which differs in some respects from Java. Here
we give a type system designed to specify our implementation of a constraint-
based type inference system for Java.
Definition 2.1 (Types): The type grammar is as follows.

τ ∈ Type ::= t | τv | (∀ t . τ \ C) | [ l : τ ] |
(t1 × . . .× tn)→ τ | cast(δ, t) |
read τ | write τ

t ∈ TypeVar ⊃ ImpTypeVar
u ∈ ImpTypeVar

τv ∈ ValueType ::= int | bool | . . . | obj(δ, [ li : τi ])
t ∈ TypeVarSet = Pfin(TypeVar)
l ∈ FieldAndMethodIdentifier
δ ∈ JavaTypeIdentifier
τ1 <: τ2 ∈ Constraint
C ∈ ConstraintSet = Pω(Constraint)

In this definition, ValueType are the types for data values, which includes
all Java primitive types (int and bool are shown as examples) and object types.
The type for an object value is of the form obj(δ, [ li : τi ]), where δ is the identifier
of its corresponding class, and the notation [ li : τi ] enumerates the type for every
instance field and instance method of the object. Every field or instance method
has a field/method identifier. Every instance field of an object is mutable and so
is given an imperative type variable u as its type; we distinguish imperative type
variables for the presentation of data polymorphism. Every method is given a
polymorphic type scheme (∀ t . τ \ C), where t is the set of bound type variables,
C is the set of constraints bound in this type scheme, and τ is an arrow type.
Type schemes are also used for analyzing classes and object creation, as will be
explained later. An arrow type (t1×. . .×tn)→ τ represents a method invocation
with ti as arguments and τ as the result.
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Read and write operations on instance fields are analyzed with types read τ
and write τ . Type [ l : τ ] is used for analyzing access of an instance field or
invocation of an instance method, where l is the identifier of the field/method,
and τ is the type specifying the usage of the field/method. A Java downcast
expression is represented with type cast(δ, t), where t is the result type of the
downcast operation and δ is the identifier of the Java type which the expression
is cast to. Casts must be an explicit part of the types because they represent
a narrowing of a type. The null value is assigned with a special object type
obj(δ0, [ ]), which is abbreviated as null.

2.2 Constraint Generation

The first phase of constraint-based type inference is to generate a set of initial
constraints corresponding to the program being analyzed. This set of constraints
captures the immediate flow information corresponding to statements and ex-
pressions in the program. A closure computation process must follow this to
propagate the initial flow information through the program. Every constraint
is of the form τ1 <: τ2, meaning that τ1 is a subtype of τ2. This constraint
intuitively represents the existence of a “flow” from expressions of type τ1 to
expressions of type τ2.

We now show how constraints are generated for the key object-oriented fea-
tures of Java. Analysis of more advanced Java features such as exceptions and
inner classes will be discussed later. To ease presentation, the type of every ex-
pression will always be a type variable, and the type variable for expression e
will be written as [[e]].

For constant expression e of Java primitive type τv , constraint τv <: [[e]] is
generated. Every static field, local variable or method parameter is assigned a
unique type variable. For an assignment expression e1 = e2, if e1 is a static field
or a local variable/parameter, [[e2]] <: [[e1]] is generated; if e1 is the access of
instance field l, [[e1]] <: [ l : write [[e2]] ] is generated, meaning that e1 is expected
to be an object that has field l, and this field is written with a value of type
[[e2]]. Similarly, for a read access of an instance field e.f, [[e]] <: [ l : read [[e.f]] ]
is generated, where the field named f is identified with abstract field label l.

Every method is given a type of the form (∀ t . (t1 × . . . × tn) → τ \ C),
where t1, . . . tn are type variables for the formal arguments, τ is the return
type, C collects constraints generated for the method body, and t collects type
variables locally generated for this method. When the method is an instance
method, the last argument tn is the type of the receiver (“this”). This simple
self-passing approach avoids altering the type scheme of an instance method
when it is inherited by sub-classes. For method invocation e.m(e1, ..., eN),
if a static method is invoked, constraint (∀ t . τ \ C) <: ([[e1]] × . . . × [[eN]]) →
[[e.m(e1, ..., eN)]] is generated, with (∀ t . τ \ C) as the method’s type scheme;
if an instance method named m, with m having abstract identifier l, is invoked,
[[e]] <: [ l : ([[e1]] × . . . × [[eN]] × [[e]]) → [[e.m(e1, ..., eN)]] ] is generated, meaning
that e is an object whose instance method l is invoked with e1, ..., eN as
arguments, and the return value “flows-to” program point e.m(e1, ..., eN).
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Every class is given two type schemes. First there is a creation-type-scheme
of the form (∀ t . t → obj(δ, [ li : τi ]) \ {}), which is a type scheme for a
function returning an object upon application. In the above object type, every
instance field is associated with a fresh imperative type variable u, which is
bound in the type scheme. Secondly, there is an initialization-type-scheme of the
form (∀ t . t → null \ C), which is a function type scheme taking the object
created as argument. The constraint set C collects constraints generated for all
the instance initialization code of the class, including a constraint for applying
the parent class’s initialization-type-scheme. Thus, expression new C() is given
initial constraints τ1 <: t → [[new C()]], null <: t, and τ2 <: [[new C()]] → null,
where τ1 and τ2 are the creation-type-scheme and initialization-type-scheme of
class C, respectively.

A downcast expression (T)e is given constraint [[e]] <: cast(δ, [[(T)e]]), with
δ being the identifier associated with the class or interface named T. Similar
constraints are used to analyze array element assignments, which also incur run-
time typecast checks.

2.3 Computation of the Closure

After generating the initial set of constraints corresponding to the static pro-
gram text, the inference algorithm computes the complete flow information by
applying the set of closure rules of Figure 1 to the constraint set. Each rule spec-
ifies a condition under which more constraints are generated; the existence of
constraints above the line dictates the generation of constraints below the line.
The closure computation starts with the initial constraint set, and the closure
rules are applied until no more constraints can be generated. This process is an
analysis-time analogy of program execution, and the rules conservatively ensure
that all potential program execution paths are covered.

(Trans)
τv <: t, t <: τ

τv <: τ

(Read)
obj(δ, [ l : u, . . . ]) <: [ l : read τ ]

u <: τ

(Write)
obj(δ, [ l : u, . . . ]) <: [ l : write τ ]

τ <: u

(Cast)
obj(δ, [ li : τi ]) <: cast(δ′, τ), δ Java-subtype-of δ′

obj(δ, [ li : τi ]) <: τ

(Message)
obj(δ, [ l : (∀ t . τ \ C), . . . ]) <: [ l : (t′1 × . . .× t′n)→ τ ′ ]

(∀ t . τ \ C) <: (t′1 × . . .× t′n−1 × t′)→ τ ′, obj(δ, [ l : (∀ t . τ \ C), . . . ]) <: t′

(∀-Elim)
(∀ t . (t1 × . . .× tn)→ τ \ C) <: (t′1 × . . .× t′n)→ τ ′, τvi <: t′i
τvi <: Θ(ti), Θ(τ) <: τ ′, Θ(C)

Fig. 1. Constraint Closure Rules
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The transitivity rule (Trans) models run-time dataflow by propagating value
types forward along flow paths. The (Read) rule applies when an object of type
obj(δ, [ l : u, . . . ]) reaches a read operation on field l, and the result of the read
is of type τ . The (Write) rule applies when a write operation on instance field l
is applied to an object whose field l is of type u.

The (Cast) rule enforces the Java run-time typecast mechanism. Recall that
type cast(δ′, τ) is for a downcast operation casting an expression to Java type δ′,
and τ is type for the result of the cast operation. The rule applies when an object
of type obj(δ, [ li : τi ]) is subject to the cast operation. If δ is a Java-subtype
δ′, the cast succeeds and the object becomes the result of the cast expression.
Otherwise, the cast fails and the downcast is recorded as unsafe by the inference
algorithm.

The (Message) rule applies when an object reaches the receiver position of an
instance method invocation. Since the last formal argument of the method’s type
scheme is for the receiver of the method invocation, a new arrow type is created
by putting the type of the actual receiver object as the last argument, and a
constraint is generated which invokes the method with the actual arguments
specified by the new arrow type.

The most important closure rule is (∀-Elim), which models method invocation
or object creation. Constraints τvi <: t′i indicate that values of type τvi flow in
as the actual arguments. At run-time each method invocation allocates fresh
locations on the stack for all variables. To model this behavior in the analysis,
a renaming Θ ∈ TypeVar

p→ TypeVar is applied to type variables in t . The
partial function Θ is extended to types, constraints, and constraint sets in the
usual manner. We call a renaming Θ a contour, and we call Θ(τ) an instantiation
of τ . The ∀ is eliminated from (∀ t . t→ τ \ C) by applying Θ to C.

The (∀-Elim) rule is parameterized by Θ, which decides for this particular
function, call site, and actual argument types, which contour is to be used (i.e.,
if a new contour is to be created or an existing contour reused). Providing a
concrete Θ instantiates the framework to give a concrete algorithm. For exam-
ple, the monomorphic algorithm 0CFA is defined by letting Θ be the identity
renaming.

Besides detecting potentially unsafe downcast expressions, the closure com-
putation outputs the closure, the set of constraints closed under the closure rules,
as the analysis result. The closure contains complete flow information about the
program, and various program properties can be deduced from it. For example,
a concrete class analysis can be defined as follows.

Definition 2.2 (Concrete Class Analysis): For an expression e in the pro-
gram, the set of concrete classes for e, CC(e), is the maximal set of classes,
such that if the closure contains constraint obj(δ, [ li : τi ]) <: t, and t is an
instantiation of [[e]], then δ ∈ CC(e).

To obtain a CPA instantiation of the framework, Θ in the (∀-Elim) rule is
defined as follows:

For each α ∈ t , Θ(α) = ατv1×...×τvn .
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The contours Θ are generated based on the actual argument types τvi, thus two
applications of the function share the same contour if and only if the actual
argument types are the same.

3 Data Polymorphic Analysis

In this section, data polymorphism and our DCPA closure algorithm are defined.

3.1 Motivation

Data polymorphism is defined in [Age96] as the ability of an imperative program
variable to hold values of different types at run-time. For example, a field declared
to be of type Object in Java can store objects of any class. Hence objects created
from the same class can behave differently with their fields assigned with values of
different types. Recall that object creation new C() is analyzed with constraints
(∀ t . τ \ C) <: t → [[new C()]] and null <: t, where (∀ t . τ \ C) is the creation-
type-scheme of class C. For 0CFA and CPA, the (∀-Elim) rule generates only one
contour for the creation-type-scheme of every class, and a single object type is
assigned to all objects created from a given class. This may lead to a precision
loss in the analysis result.

Consider the program of Figure 2. Two instances of Hashtable are created

import java.util.Hashtable;

class A {

public static void main(String args[]) {

Hashtable ht1=new Hashtable();

Hashtable ht2=new Hashtable();

ht1.put("zero", new Integer(0));

ht2.put("true", new Boolean(true));

Integer i=(Integer)ht1.get("zero");

}

}

Fig. 2. Java program with data polymorphism

and used differently, yet CPA allows them to share the same object type, and
the analysis would imprecisely conclude that the result of ht1.get("zero")
includes Boolean objects. If on the other hand two separate object types were
used for the two Hashtable instances, this downcast would be statically verified
as sound.

In order to more accurately analyze such programs, we have developed a
Data-Polymorphic CPA (DCPA) algorithm, which extends CPA to effectively
analyze data polymorphic programs. The basic idea is to divide CPA contours
into two categories: those unrelated to data polymorphism and can be shared
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without losing precision (the CPA-safe or reusable contours), and those which
may contain data polymorphism and thus sharing such contours might cause a
loss of precision (the CPA-unsafe contours). The DCPA algorithm is the same
as CPA except that: after every contour is generated, it judges the contour to
be CPA-safe or CPA-unsafe; when there is a need to reuse an existing contour,
yet the contour is already judged to be CPA-unsafe, DCPA would generate a
fresh contour instead of reusing the existing one. DCPA aims to be precise by
detecting as CPA-unsafe those contours which exhibit data polymorphism, and
aims to be efficient by declaring as many contours CPA-safe as possible.

We now discuss the idea in detail. We first consider the analysis of object
creations. Recall that an object creation expression new C() is analyzed with
a pair of constraints (∀ t . τ \ C) <: t → [[new C()]] and null <: t, where
(∀ t . τ \ C) is the creation-type-scheme of class C. We will refer such a pair of
constraints as the creation points of class C. If a class contains any polymorphic
field (a polymorphic field is a field which can store values of different types),
DCPA algorithm always judges contours of the creation-type-scheme of such a
class as CPA-unsafe. Thus, for any creation point of a class with polymorphic
fields, a fresh object type is generated for the class. On the other hand, if a class
(e.g. class java.lang.Integer) contains no polymorphic fields, DCPA algorithm
would judge the contour of the class’s creation type scheme as CPA-safe, thus
all objects of the class share a single object type.

We now consider contours generated for method invocations. If CPA loses
precision because of data polymorphism, there must be multiple objects from
the same class such that those objects are used differently at run-time yet CPA
let them share the same object type. The goal of DCPA is to generate more
object types so that such imprecision can be avoided. Thus, if a method invo-
cation doesn’t cause the creation of any objects, the contour for such a method
invocation is CPA-safe. For example, consider the program in Figure 3. DCPA
would let the two invocations of the method id share a single CPA-safe contour.

Furthermore, if a method invocation creates objects, but the objects created
do not escape the method scope via the return value, then the contour for such a
method invocation is also CPA-safe. Consider the program in Figure 3. Since the
two invocations of method g have the same argument type, CPA would let them
share a single contour. The two invocations create two Vector instances, but
the two instances escape the scope of g only through static field a, not through
the return values. If two distinct contours were used for the two invocations of
method g, there would be two creation points of class Vector, and there would
be two distinct object types generated for Vector. But the two object types
would both be lower bounds of the type variable for field a, forcing them to be
equivalent in any case. Thus, for the two invocations of method g, generating two
contours are not beneficial, and DCPA would let them share a single CPA-safe
contour without any loss of precision.

Even if an object created by a method invocation escapes the method scope
through the return value, if the fields of the object are already assigned with
values of fixed types, such an invocation is also considered CPA-safe. For exam-



Precise Constraint-Based Type Inference for Java 9

ple, consider method h in Figure 3. A Vector object is created and returned by
the method. But before it is returned, a Boolean object is already put in the
vector. Thus the two vectors created by the two invocations of h would both have
contents of Boolean type. CPA would let the two invocations of method h share
a single contour. If two distinct contours were used for the two invocations of
method h, there would be two creation points of class Vector, and there would
be two distinct object types generated for Vector. But the two object types
would both have Boolean as content type. Since all fields of Boolean objects
are also assigned values of fixed types, we consider that the type for the two
vectors as already known and consider generating two distinct contours as not
beneficial. Therefore, DCPA would let the two invocations of method h share a
single CPA-safe contour.

import java.util.*;

class A {

static Object a;

static Object id(Object x) { return x;}

static Object g(Object x) { a=new Vector(); return x;}

static Object h() {

Vector v=new Vector();

v.addElement(new Boolean(true));

return v;

}

public static void main(String args[]) {

Object obj=new Hashtable();

id(obj); id(obj); g(obj); g(obj);

h(); h();

}

}

Fig. 3. Example Program with CPA-Safe Contours

For some programs, even with the above strategy which aims to identify as
many CPA-safe contours as possible, there are still too many contours declared as
CPA-unsafe. To make the algorithm feasible, an additional unification heuristic
is incorporated into DCPA. The idea is that, whenever two object types of the
same class “flow together” (i.e., become lower bounds of a single type variable),
the algorithm assumes that the data structures represented by the two object
types would be used in the same way and it unifies the two object types. Although
this unification mechanism could in theory cause precision loss, in practice we
have found that such cases are rare.

3.2 The DCPA Algorithm

We now give a definition of the DCPA closure algorithm. The DCPA algorithm
computes a constraint closure from the same initial constraints as defined in the
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previous section, using stack-based algorithm. Whenever a contour is generated
for a method invocation, the algorithm checks the return type of the contour to
judge if the contour is reusable. To do that, it needs to know the “local” set of
constraints corresponding to the local computation of the method invocation.
Since contours are nested, in general it must keep a stack of constraints which
mirrors the call stack, and the closure computation itself is specified by a state-
transition machine where the state is a stack of constraints.

First, we define the representation of contours.

Definition 3.1 (Contour): A contour ρ is a triple of form (c, τvi, Θ), recording
information about a ∀-elimination, where c is the constraint of form (∀ t . (t1 ×
. . .× tn)→ τ \ C) <: (t′1 × . . .× t′n)→ τ ′, τvi is a vector of the actual argument
types, and Θ is the renaming on t used by the ∀-Elimination.

We define the closure computation as a state transition process, where a state
is defined as follows:

Definition 3.2 (Closure State): A closure state is a pair (S,Ω). S is a stack
with frames of form (ρ,C), where ρ is a contour and C is a set of constraints. Ω
is the contour cache, which is a set of pairs of form (ρ, b), where ρ is a contour
and b is a boolean value.

A contour is an analysis-time analogy of a run-time activation record, and
the state is a stack that corresponds to the run-time stack of activation records.
A stack frame (ρ,C) represents a contour with C as the set of local constraints
for the contour. Every time a new contour is created, it is pushed onto the
stack. When the closure computation is finished for constraints generated by
this contour, the contour is popped off the stack. The top frame of the stack
corresponds to the current contour. The contour cache Ω stores all contours
thus far created. Each contour is associated with a boolean value, which is true
iff the contour is reusable. We will write S ∧ [(ρ,C)] to indicate a stack with
(ρ,C) as the top frame, and [(ρn, Cn), . . . , (ρ1, C1)] as the stack with n frames
enumerated from bottom to top. For constraint c and state (S,Ω), we write
c ∈ S if c ∈ Ci and (ρi, Ci) is a frame in S.

Rules for closure state transition are shown in Figure 3.2. Every rule specifies
a transition from the closure state above line to the state below the line. The
notation (S,Ω) with C specifies a closure state where every constraint in C
occurs somewhere in S, and there exists at least one constraint in C which
occurs in the top frame of S.

The (S-Trans) transitivity rule applies only when at least one constraint
amongst τv <: t and t <: τ is in set C1 (the constraint set in the top frame
of the state stack), and the constraint τv <: τ generated by the transitivity is
added to C1. This serves to maintain the invariant that any constraints generated
from the constraint set in the stack top will also become part of the constraint
set in the stack top. The rules (S-Read), (S-Write), (S-Cast), (S-Message) can
be understood similarly. In (S-Message) and subsequent rules, notation ×i=1

n ti
abbreviates t1 × . . .× tn.
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(S-Trans)
(S ∧ [(ρ1, C1)], Ω) with {τv <: t, t <: τ}
(S ∧ [(ρ1, {τv <: τ} ∪ C1)], Ω)

(S-Read)
(S ∧ [(ρ1, C1)], Ω) with {obj(δ, [ l : u, . . . ]) <: [ l : read τ ]}
(S ∧ [(ρ1, {u <: τ} ∪ C1)], Ω)

(S-Write)
(S ∧ [(ρ1, C1)], Ω) with {obj(δ, [ l : u, . . . ]) <: [ l : write τ ]}
(S ∧ [(ρ1, {τ <: u} ∪ C1)], Ω)

(S-Cast)
(S ∧ [(ρ1, C1)], Ω) with {obj(δ, [ li : τi ]) <: cast(δ′, τ)}, δ Java-subtype-of δ′

(S ∧ [(ρ1, {obj(δ, [ li : τi ]) <: τ} ∪ C1)], Ω)

(S-Message)

(S ∧ [(ρ1, C1)], Ω) with {obj(δ, [ l : (∀ t. τ \ C), . . . ]) <: [ l : (×i=1
n t′i)→ τ ′ ]}

(S ∧ [(ρ1, {(∀ t. τ \ C) <: ((×i=1
n−1 t

′
i)× t

′)→ τ ′,

obj(δ, [ l : (∀ t. τ \ C), . . . ]) <: t′} ∪ C1)], Ω)

(S-∀-Reuse)
(S ∧ [(ρ1, C1)], Ω) with {(∀ t. (×i=1

n ti)→ τ \ C) <: (×i=1
n t′i)→ τ ′, τvi <: t′i},

(((∀ t. (×i=1
n ti)→ τ \ C) <: (×i=1

n t′′i )→ τ ′′, τvi, Θ), true) ∈ Ω
(S ∧ [(ρ1, C1 ∪ {Θ(τ) <: τ ′})], Ω)

(S-∀-Begin)

(S ∧ [(ρ1, C1)], Ω) with {(∀ t. (×i=1
n ti)→ τ \ C) <: (×i=1

n t′i)→ τ ′, τvi <: t′i},
(((∀ t. (×i=1

n ti)→ τ \ C) <: ×i=1
n t′′i → τ ′′, τvi, Θ

′′), true) 6∈ Ω,
(((∀ t. (×i=1

n ti)→ τ \ C) <: ×i=1
n t′i → τ ′, τvi, Θ

′), b) 6∈ Ω
(S ∧ [(ρ1, C1), (ρ, {τvi <: Θ(ti)} ∪Θ(C))], Ω)
where ρ = ((∀ t. (×i=1

n ti)→ τ \ C) <: (×i=1
n t′i)→ τ ′, τvi, Θ),

and Θ is a fresh renaming on type variables in t

(S-∀-End)
(S ∧ [(ρ2, C2), (ρ1, C1)], Ω)
(S ∧ [(ρ2, C2 ∪ C1 ∪ {Θ(τ) <: τ ′})], Ω ∪ {(ρ1, b)})
where for ρ1 = ((∀ t. (×i=1

n ti)→ τ \ C) <: (×i=1
n t′i)→ τ ′, τvi, Θ),

b is true iff ρ1 is reusable in (S ∧ [(ρ2, C2), (ρ1, C1)], Ω)

(S-Unify)
(S,Ω) with {obj(δ, [ li : τi ]) <: t, obj(δ, [ l′i : τ ′i ]) <: t}
Θ((S,Ω)), where Θ = U(obj(δ, [ li : τi ]), obj(δ, [ li : τ ′i ]))

Fig. 4. DCPA Constraint Closure Rules

The (∀-Elim) rule of the framework corresponds to three DCPA closure rules.
(S-∀-Reuse) is used in the case that the ∀-elimination reuses an existing contour.
A contour ρ is reusable for this application if (ρ, true) ∈ Ω and ρ has the same
argument types as this application. According to the (∀-Elim) closure rule, this
∀-elimination would generate such a set of constraints: {τvi <: Θ(ti), Θ(τ) <:
τ ′} ∪ Θ(C). Since this is a reuse of an existing contour, all those constraints
except for the constraint Θ(τ) <: τ ′ have already been generated and those
constraints are already in the constraint sets of the stack. Thus, only constraint
Θ(τ) <: τ ′ is added to the constraint set in the top frame of the stack.

The rule (S-∀-Begin) creates a new contour. The condition (∀ t . (t1 × . . . ×
tn) → τ \ C) <: t′′1 × . . . × t′′n → τ ′′, τvi, Θ′′), true) 6∈ Ω means that there is no
reusable (CPA-safe) contour for the same function applied to the same argument
type τvi in the contour cache. The condition (((∀ t . (t1 × . . .× tn)→ τ \ C) <:
t′1 × . . . × t′n → τ ′, τvi, Θ′), b) 6∈ Ω means that it is not the case that there is
already a contour generated for this application. When the two conditions are
satisfied, a fresh contour is generated for the application. The local constraint set
of the new contour is initialized to include constraints τvi <: Θ(ti) and the fresh
copy of all bound constraints, Θ(C). The constraint Θ(τ) <: τ ′ corresponding
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to the flow from the return value of the function to the application result is not
considered a local constraint of the contour. Finally, the new contour along with
its local constraint set is pushed on to the stack.

The rule (S-∀-End) ends the creation of a contour. It pops the current contour
off the stack, merges the local constraints of this contour with those in the new
top frame of the stack, generates constraint Θ(τ) <: τ ′ corresponding to the
flow from the return value to the application result, and checks if the contour is
reusable and records it in the contour cache. The definition of reusable is now
defined, via the notions of local type and complete type.
Definition 3.3 (Local Types): Object type obj(δ, [ li : τi ]) is local to state
([(ρn, Cn), . . . , (ρ1, C1)], Ω) if obj(δ, [ li : τi ]) does not appear as a subterm of
some constraint in Ci for any i 6= 1.

Type obj(δ, [ li : τi ]) is declared local if and only if it is created locally by
the current contour.
Definition 3.4 (Complete Types): Type τ is complete in state (S,Ω) iff any
of the following cases holds:

1. τ is a primitive Java type, e.g. int or bool;
2. τ = t, τv1 <: t ∈ S, τv2 <: t ∈ S, and τv1 6= τv2;
3. τ = t, τ ′ <: t ∈ S, and τ ′ is complete in (S,Ω);
4. τ = obj(δ, [ li : τi ]), and for any τi which is imperative type variable ui, ui

is complete in (S,Ω);
5. τ = obj(δ, [ li : τi ]), and obj(δ, [ li : τi ]) is not local to (S,Ω).

In the first case above, int and bool and all other Java primitive types are
judged complete. In cases 2. and 3., a type variable is considered complete if it
has a complete type or at least two different value types as lower bounds. In
cases 4. and 5., object type obj(δ, [ li : τi ]) is complete if the type variables for
all its fields are complete, or it is not created locally by the current contour. The
above definition is subtle, and the details are critical in obtaining an accurate
and efficient analysis.
Definition 3.5 (Reusable Contour): A contour ((∀ t . (t1 × . . . × tn) →
τ \ C) <: (t′1 × . . . × t′n) → τ ′, τvi, Θ) is reusable in state (S,Ω) iff Θ(τ) is
complete in (S,Ω) and there does not exist (((∀ t . (t1 × . . . × tn) → τ \ C) <:
t′′1 × . . .× t′′n, τvi, Θ′), false) ∈ Ω.

The above definition judges a contour ρ as not reusable if the return type of
the contour is not complete.

The rule (S-Unify) unifies two object types when they are from the same
class, making them lower bounds of the same type variable. The unification
algorithm is defined as follows.
Definition 3.6 (Unification of Object Types): The unifier of the two object
types of same class l, U(obj(δ, [ li : τi ]),obj(δ, [ li : τ ′i ])), is a composition of
substitutions bτi/τ ′ic for each i s.t. τi is an imperative type variable.

We now define the closure process itself, via a state transition relation which
is prioritized to make sure a contour is not popped until its analysis has finished.
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Definition 3.7 (DCPA State Transition Relation 7→): s1 7→ s2 iff closure
state s1 transits to s2 by a rule in Figure 3.2, and one of the following three
cases hold: the rule is neither (S-∀-Begin) nor (S-∀-End); the rule is (S-∀-Begin),
and the only other applicable rule on s1 is (S-∀-End); or, the rule is (S-∀-End),
and no other rules are applicable on s1. ∗7→ is the transitive, reflexive closure of
7→.

The closure computation is a state-transition process via relation 7→ until a
fixed point is reached.
Definition 3.8 (DCPA Closure Computation): Given a constraint set C,
if ([(ρ0, C)], {}) ∗7→ ([(ρ0, C

′)], Ω), (where ρ0 is a special dummy contour), and
for any state s such that ([(ρ0, C

′)], Ω) 7→ s, we have s = ([(ρ0, C
′)], Ω), then we

say ([(ρ0, C)], {}) DCPA7−→ ([(ρ0, C
′)], Ω), and also will write C DCPA7−→ C ′, meaning C ′

is the DCPA closure of C.
Now the type inference with DCPA Algorithm can be defined as follows:

Definition 3.9 (DCPA Algorithm): For a program e with initial constraint
set C, if C DCPA7−→ C ′, then C ′ is a DCPA closure for e.

4 Implementation

In this section, we discuss our implementation of 0CFA, CPA and DCPA for
Java. The system is itself written in Java. It takes Java source code as input and
statically checks the validity of all down-casts in the program. For each Java
downcast of the form (T)e, casting expression e to Java class or interface T, the
system computes a set of Java classes which are conservative approximations of
the classes which e can take on at run-time. If the algorithm discovers that e
might evaluate to an object of class C, and C is not a Java subtype of T, then
the downcast is reported as unsafe; otherwise the cast is safe. If a downcast is
judged as safe by the system, it is guaranteed to succeed at run-time. The sys-
tem currently can handle all standard Java language features, including objects,
classes, interfaces, inner classes, and exceptions. The only feature the system
cannot handle automatically is the reflection mechanism of Java.

Though our system is built as a downcast checker, it is essentially a concrete
class analysis tool for Java. So, it could also be used as an analysis tool for static
resolution of virtual method calls and other compiler optimizations.

4.1 Java Language Issues

We have up to now ignored several features of Java; here we provide a sketch of
how they are handled by the implementation. Recall that an extra “this” argu-
ment is added for the type scheme of every instance method. Type schemes for
constructors also have an extra “this” argument. Because of this, the process-
ing of inheritance is simple: no classes, methods or constructors are re-analyzed
upon inheritance. Every class is represented as a class object, which has the
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following components: a reference to the class object for the parent class, a
method-lookup-table containing type schemes for instance methods defined in
this class, type schemes for constructors and static methods, and the class’s
creation-type-scheme and initialization-type-scheme. Such a class object imple-
ments the “class identifier” concept in our type system, and is shared by all
object types created from the class.

For each abstract method of a Java interface, a hashtable is built, which
associates every concrete class implementing this interface with the an instance
method of the class, corresponding to the abstract method. Such hashtables are
used during closure computation to determine the type scheme of the target
method for a virtual method call through an interface.

Array objects are analyzed as special object types with a single field repre-
senting the array contents. Array store expressions in Java require a run-time
check to ensure the type safety. Thus those expressions are analyzed in a similar
way as down-cast expressions. And, the system also statically checks the type
safety of every array store expression.

Inner Classes are analyzed as follows. In Java, from an instance of the inner
class, an instance of every enclosing class is accessible. Thus, for every enclosing
class, an additional field is added to the object types of the inner class, repre-
senting the enclosing instance. Similarly, the creating-type-scheme of an inner
class contains an extra “this” argument for every enclosing class. An inner class
may also access local variables in the surrounding lexical context. For every local
variable accessed, we add a special field in the inner class for it, and thus con-
vert the variable access to a field access. In this way, all type schemes generated
in our system enjoy the following property: bound type variables of one type
scheme never appear in the scope of another type scheme. Namely, no nested
type schemes are. Thus, when instantiating a type scheme by renaming all types
and constraints in its scope, no type scheme needs to be renamed.

Java exception-handling features are analyzed in a simple manner. Each ex-
ception class (i.e., subclass of java.lang.Throwable) is represented by a unique
type variable. If exception class A is a subclass of exception class B, constraint
t1 <: t2 is generated, where t1 and t2 are type variables for classes A and B re-
spectively. A statement throw e produces a special constraint [[e]] <: exception,
where exception is a special type such that for any object type τ of an excep-
tion class becoming a lower-bound of exception, a constraint τ <: t is generated
with t as the type variable corresponding to the exception class of τ . A statement
of form try {...} catch(T e) {...} produces constraint t <: [[e]], where t is
the type variable for the exception class T.

We also make special effort to accurately analyze a common Java program-
ming idiom:

if (x instanceof A) {

A c = (A) x; ...

}

At the entry point of the true branch, it is certain that values of variable x
are instances of class A. The analysis uses a simple algorithm to conservatively



Precise Constraint-Based Type Inference for Java 15

estimate whether the boolean condition of an if statement further constrains
the class of any object by presence of instanceof, and if so uses that fact in the
analysis.

Since our analysis is a whole program analysis, libraries must be included in
program analysis. We use the Sun JDK library source. Native library methods
were manually replaced with type-compatible Java code. The reflection features
of Java pose a significant difficulty for any static analysis. For example, it is
impossible for a static analysis to determine precisely which class is dynami-
cally loaded. Our solution is to manually replace library code using reflection
with type-compatible code without reflection. For example, the code fragment
Class.forName(x).newInstance() can be replaced with new A() if it is certain
that class A is loaded.

4.2 Optimizations

We now discuss some optimizations implemented in our system to improve the
performance for analyzing realistic Java applications.

Optimization with Monomorphic Types Monomorphic types include Java
primitive types (e.g., int, boolean) and object types of monomorphic classes.
Monomorphic classes (e.g., String, Integer) are those classes which do not
have subclasses and only have fields capable of storing values of monomorphic
values. If according to the Java static type declaration, a variable or expression
is of a monomorphic type, we use the monomorphic type directly as the type for
such a variable or expression without any type inference effort.

Additional Contour Sharing DCPA as defined will in fact not always ter-
minate on recursive programs. We previously formalized a provably terminat-
ing CPA algorithm [SW00]. Since no nested type schemes are generated in our
current system, CPA would always terminate without any special termination
mechanism. To ensure the termination of DCPA, our system performs online re-
cursion detection, and always treats contours for recursive methods as CPA-safe.

Another issue is to prevent the algorithm from creating too many contours
on certain pathological cases. Agesen [Age96] defines the notion of megamor-
phism, which means too many different value types flow to a single call site as
arguments. To prevent CPA from blowing up, the number of contours generated
for a megamorphic call site is reduced. This idea is also employed in our system.
In theory, DCPA may also blow up when too many contours are judged as CPA-
unsafe. To prevent DCPA from blowing up in this case, a contour is regarded as
CPA-safe when too many object types are created locally by the contour.

Online Cycle Elimination Partial online cycle elimination [AFFS98] is an-
other optimization incorporated in our system. The basic idea is to detect cycles
of the form t1 <: t2 . . . <: tn <: t1, and collapse all type variables on such cycles



16 Tiejun Wang and Scott F. Smith

into a single variable. We have implemented the cycle elimination mechanism
using a novel approach. Instead of performing cycle detection as a separate op-
eration at every update of the constraint system, as in [AFFS98], we piggyback
the cycle detection operation on the process of propagating value types along
flow paths. Whenever the (Trans) closure rule is applied on constraint τv <: t, τv
also needs to be propagated to type variables which are upper bounds of t. Our
system performs cycle detection on t while propagating τv forward. It keeps track
of type variables visited on the current flow path so an already-visited variable
will be discovered. In this way, the overhead of cycle detection is reduced.

Automatic Constraint Garbage Collection Constraints which will induce
no future closure computation have served their purpose and can be garbage
collected. It is possible to precisely detect which constraints are garbage [EST95,
Pot98], but these algorithms are nontrivial and the act of detecting the garbage
itself slows down the analysis. We use a simpler form of garbage collection which
is automatic: constraints are represented in the implementation in a manner such
that many unreachable constraints will be automatically collected by the Java
run-time garbage collector.

There are additional constraint-based optimizations which could be included
in our system to further improve its performance, including constraint graph
minimization [FF97] and precise garbage collection.

5 Experimental Results

Benchmark results are presented in Table 5. The following benchmark programs
were used: jlex1 is a lexical analyzer generator; toba2 is a Java-to-C code trans-
lator; javacup3 is a Java parser generator; jtar4 is an archive utility; bloat5 is a
Java bytecode optimizer; self is our system itself used as a benchmark; sablecc6

is a compiler generator; javac and javadoc are standard tools in Sun’s Java SDK.
The column “lines” shows the number of lines of source code in the bench-

mark program only. Since our system is a whole-program analysis, every bench-
mark was analyzed along with the reachable library code. The column “meth-
ods” shows the number of reachable methods in the whole program including
libraries detected by DCPA algorithm; The column “casts” shows the number
of downcasts in the benchmark program only. Downcasts reachable in the li-
brary code are also checked, but checking downcasts in user code is the goal of
the system and only those casts are reported. Each benchmark is analyzed with
0CFA, CPA and DCPA. The columns labeled “safe” indicate the percentage of
1 see www.cs.princeton.edu/˜appel/modern/java/JLex/
2 see www.cs.arizona.edu/sumatra/toba/
3 see www.cs.princeton.edu/˜appel/modern/java/CUP/
4 see www.angelfire.com/on/vkjava/
5 see www.cs.purdue.edu/homes/hosking/bloat
6 see www.sable.mcgill.ca/sablecc/
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0CFA CPA DCPA
Program lines methods casts safe time safe time Θ safe time Θ

jlex 7835 398 65 10.8% 3.3 16.9% 3.5 1.5 100% 3.8 2.3
toba 6417 777 63 4.8% 4.8 4.8% 5.1 1.6 22.2% 6.4 2.7
javacup 10592 532 459 8.1% 3.6 8.1% 3.9 1.4 89.3% 4.5 3.6
jtar 11904 1446 10 0% 6.7 0% 7.1 1.5 100% 11.0 2.4
bloat 18841 1053 205 7.8% 5.3 8.8% 5.9 1.5 30.2% 7.1 4.3
self 23122 1304 130 36.9% 4.5 51.5% 5.9 1.9 93.8% 10.7 3.4
javadoc − 2314 310 25.3% 10.1 40.8% 13.0 1.9 77.7% 23.6 4.3
sablecc 23111 2811 519 34.5% 10.9 35.2% 10.9 2.5 61.7% 21.3 4.1
javac − 2933 606 17.1% 12.5 30.5% 30.0 2.5 50.1% 74.8 7.1

Table 1. Benchmark Data

total user downcasts which have been statically verified. The columns labeled
“time” report system execution time in seconds, including time for parsing, type
inference and closure computation. For CPA and DCPA, columns labeled “Θ”
report the average number of contours generated for each type scheme; this is
always 1 for 0CFA.

The benchmark results were obtained using the Sun JDK 1.3 on a PC with
a 866MHZ Pentinum processor and 512M of memory. All benchmarks except
javac were analyzed with a 80M maximum heap size. javac has a very complex
inheritance hierarchy, and its analysis is significantly more complex than the
other benchmarks. The results for javac with 0CFA, CPA, DCPA were obtained
with 80M, 96M and 160M maximum heap size, respectively.

As can be seen in the benchmarks, DCPA can verify significantly more down-
casts than either CPA or 0CFA. For example, all downcasts in user code of jlex
and jtar have been statically verified. This shows that CPA and 0CFA are not
precise enough for downcast checking, and in general, DCPA is a much more pre-
cise type inference algorithm for object-oriented languages. We have manually
studied the downcasts which cannot be verified by DCPA for some benchmark
programs. Nearly all of them cannot be verified even with an analysis that would
generate a fresh contour for every function application. Some of the remaining
downcasts could be verified by a flow-sensitive analysis, but most are fundamen-
tally “dynamic”, with safety that depends on the state of execution, and thus
not verifiable by any static analysis of this variety. For example, DCPA can only
verify 22.2% of the downcasts in toba, but a manual inspection shows that nearly
all of the remaining downcasts are fundamentally dynamic. In summary, DCPA
appears to produce nearly optimal results as a flow-insensitive static analysis
for downcast checking on the programs we have tested. DCPA also has good
efficiency: comparing the time and the average number of contours of CPA and
DCPA, we can see that DCPA’s efficiency is comparable to CPA; furthermore,
realistic Java applications can be analyzed.



18 Tiejun Wang and Scott F. Smith

6 Related Work

Plevyak and Chien’s iterative flow analysis (IFA) [PC94] is a precise constraint-
based analysis of object-oriented programs. To the best of our knowledge, IFA
is the only system in the literature capable of analyzing data polymorphic pro-
grams precisely. IFA uses an iterative approach in which the whole analysis must
be iterated multiple times. Compared to IFA, our system detects data polymor-
phism online, and does not need generational iteration.

O’Callahan [Cal99] has built a system for the analysis of Java bytecode.
The system is used for static verification of Java downcasts. His type schemes
are much more compact yet less precise than the constraint-based type schemes
used in our system. While our system aims to reuse contours across different
call sites and only produces a few contours on average for each type scheme, his
system is fully context-sensitive and always instantiates a type scheme differently
in every different context. Duggan has also proposed a system to automatically
detect polymorphic Java classes [Dug99]. His proposal does not appear to be as
precise as ours. It is currently not implemented or tested with benchmarks and
so its feasibility and performance are unclear.

The analysis we produce here is perhaps the most precise constraint-based
analysis for object-oriented programs thus far developed. We are going opposite
the common trend today, which is toward less expressive (but more efficient)
analyses (e.g., [SHR+00, TP00]). These fast analyses are getting popular because
for many purposes it has become clear that a fine-grained analysis is not needed.
But, this paper shows that there still are purposes, including cast-checking, where
it is critical to have a very fine-grained analysis.
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