Sound Polymorphic Type Inference for Objects

Jonathan Eifrig*!

Scott Smith*

Valery Trifonov*

Department of Computer Science, The Johns Hopkins University
{eifrig, scott, trifonov}@cs. jhu.edu

Abstract

A polymorphic, constraint-based type inference algo-
rithm for an object-oriented language is defined. A
generalized form of type, polymorphic recursively con-
strained types, are inferred. These types are expressive
enough for typing objects, since they generalize recursive
types and F-bounded polymorphism. The well-known
tradeoff between inheritance and subtyping is mitigated
by the type inference mechanism. Soundness and com-
pleteness of type inference are established.

1 Introduction

Type inference, the process of automatically inferring
type information from untyped programs, is originally
due to Hindley and Milner [16]. These ideas have found
their way into some recent innovative programming lan-
guages, including Standard ML [17]. The type infer-
ence problem for object-oriented languages is a chal-
lenging one: even simple object-oriented programs re-
quire quite advanced features to be present in the type
system. One of the main sources of difficulty lies with
binary methods, such as an add method on Number ob-
jects. The problems arise when classes containing binary
methods are subclassed: in this process the type of “self”
changes, and some notion of operator polymorphism or
F-bounded polymorphism is needed to capture this be-
havior type-theoretically [9, 6]. In addition the object
types are self-referential (e.g. the type of the argument
to add is the same as the object’s type), so a form of
recursive/self-referential type is also needed.

We define a polymorphic, constraint-based type infer-
ence algorithm for an object-oriented language, I-LooP.
Our language incorporates standard notions of class,
multiple inheritance, object creation, message dispatch,

*Partially supported by NSF grants CCR-9109070 and CCR-
9301340
tPartially supported by AFOSR grant F49620-93-1-0169

mutable instance variables, and hiding of instance vari-
ables. Thus, there is enough of a core that the ideas
should scale up to an implemented language. We de-
fine an algorithm to automatically infer a generalized
form of type, recursively constrained (rc) types of the
form 7\ C, with “\ ” reading “where.” Types of sim-
ilar expressive power have been defined by Curtis [10],
and Aiken and Wimmers [2]. 7 here is a type, and C'is a
set of type constraints, each of the form 7 < 75. These
constraints may be recursive in that a variable ¢ could
occur free in both 7 and 7. For example, the rc type

t\ {Nat—t <t, t < Nat—t}

is equivalent to the recursive type ut.Nat—t. This
form of type is thus a generalization of recursive types.
Polymorphic rc types have the form Viq,...,t,.7\ C
where constraints 7 < 75 in C may contain type vari-
ables t1,...t, free. This type language is strong enough
for typing objects, since recursive constraints general-
ize recursive types, and rc-polymorphism generalizes F-
bounded polymorphism. The polymorphic types in-
ferred are analogous to the so-called let-polymorphic
types of the Hindley/Milner system. Additional expres-
sive power is gained from the ability to have multiple
upper and lower bounds on the same type variable in a
rc type. These constraints can be understood as defin-
ing a restricted form of union and intersection type:
{7 <t, 7 <t} is conceptually equivalent to {7V 7’ <t}
in a language with union types 7V 7’; a dual relationship
exists between intersections and upper bounds.

By using this form of type in an object-oriented lan-
guage, detailed rc types can be inferred that are far more
precise than any type a programmer would be likely to
specify by hand. And, this will in turn give the program-
mer a degree of flexibility well beyond what is provided
by current typed object-oriented languages. In partic-
ular, there is a well-known trade-off between subtyping
and inheritance. Most object-oriented languages require
the choice of one approach exclusive of the other. For
instance in C++ and Object Pascal, inheritance is sub-
typing, so binary methods will not inherit properly. In
PolyTOIL [5] and our LooP language [12], inheritance
is not subtyping, so binary methods inherit properly but
object subtyping may be limited. Our type inference al-

gorithm is capable of inferring a most general type that
in effect postpones the choice of subtyping or binary
method inheritance to the point the objects are used,
thus allowing for significantly greater flexibility without
requiring the language designer or programmer to make
a choice between the two.

We have previously defined a language, [-Soop, that
is the non-object-oriented analogue of I-LooP. I-SooP’s
features include rc types, let-polymorphism, and type in-
ference [11]. The current paper shows how these ideas
can be applied to an actual object-oriented language.
We additionally consider issues of type simplification,
since the number of constraints produced by the infer-
ence algorithm can be large.
sults of the paper are the soundness and completeness
of the type inference system. The I-LooOP language
and typing rules are shown sound by translation into
I-Soop. A similar methodology was carried out in a pa-
per presented at a previous OOPSLA conference [12].
That paper was concerned with the problem of type
checking for object-oriented languages, not type infer-
There we developed a type-checking algorithm
for Loopr, and proved it sound by translation into the
non-object-oriented SOOP language. In both that paper
and the present one, the terms and types of (I-)LooPp
are translated into (I-)SooP, and soundness means that
if an (I-)LooP program is typable, its translation into
(I-)SoopP is also typable. I-SooP has been defined and
proven sound in [11]. Tt would also be possible to give
a soundness proof for I-Loop directly, but at this stage
in the project we feel the insights gained by a transla-
tional approach are worth the costs. See for instance [1]
for ideas on how objects may be directly given mean-
ing. The second main result we obtain for I-LooP is
the completeness of type inference, establishing that the
type inference algorithm will always infer a type if there
is one.

The main technical re-

ence.

1.1 Related Work

Many of the papers on constraints and type inference
are not directly concerned with type inference for ob-
jects. Three classic papers on subtyping and type con-
straints are [24, 7, 18]. Constrained type inference al-
gorithms that are somewhat weaker than the approach
we take have been developed for conventional languages
[28, 14, 25]. The stronger version of types with recursive
constraints, polymorphism, and type inference was first
formulated by Curtis in his purely functional PLEAT
language [10]. His work has not received widespread
circulation, however. We learned of these richer types
through the work of Aiken and Wimmers [2], which
demonstrates soundness of a full type inference algo-
rithm for a simple functional language; Curtis only

showed soundness of a weaker inference algorithm (he
however conjectured soundness of a full algorithm). We
first established completeness of type inference, i.e. that
the inference algorithm will find a typing if there exists
one, and were the first to incorporate state, which re-
quired a completely different proof technique for sound-
ness [11]. Aiken and Wimmers have not addressed the
problem of typing object-oriented programs, and their
language also lacks important features such as state
and records necessary for encoding objects. This paper
presents the first object-oriented language to incorporate
rc types and type inference, and shows the soundness and
completeness of such a type discipline. state in particu-
lar poses difficulty to requires a new proof technique.

In the realm of object-oriented languages, Bruce et
al. [5] have developed an expressive object-oriented pro-
gramming language, PolyTOIL, with decidable type-
checking (not inference), which is similar to our Loop
language [12] in that it properly types binary methods in
the presence of inheritance. PolyTOIL in addition has a
form of higher-order polymorphism. I-Loop allows for
inference of higher-order polymorphic types in the form
of rc types. The expressivity of the two forms of poly-
morphism are incomparable, but both share some of the
same basic functionality. There is a matching require-
ment for subclassing in PolyTOIL; interestingly, there is
no such requirement for subclassing in I-LooP, allowing
more legal subclasses. This topic will be discussed in
more detail in the body of the paper.

Palsberg, Schwartzbach, et al. have a number of sig-
nificant results concerning type inference for object-
oriented languages [21, 20, 22]. They have developed a
novel type inference procedure that is rooted in the ideas
of flow analysis. They show how their approach may
be used to infer the type-correctness of object-oriented
programs. Other advantages of their approach include
asymptotically efficient inference algorithms, and named
class types. Their system however has no polymorphism,
and they take a code-expansion view of inheritance, re-
quiring re-type-checking with each class extension. It
also requires the whole program to be present, interfer-
ing with modularity. Plevyak and Chien [23] have ex-
tended this flow-based approach to incorporate a notion
of polymorphism via the concept of splitting the flow
graph. Their aims and approach are somewhat differ-
ent than ours, but a comparison is nonetheless possible.
Roughly speaking, both approaches are alike in that they
infer very powerful types for object-oriented programs;
but while their analysis requires the whole program to
be present, our approach can be applied to parts sepa-
rately, allowing modularity to be accommodated. They
place more emphasis on implementation: their algorithm
has been implemented as part of the Concurrent Aggre-
gates language, and they have made impressive use of the

type inference information to aid in the generation of op-
timal code. In some ways their inference algorithm also
appears to be more powerful, as it allows for more than
let-polymorphism, but at the price of accepting closed
programs only. We give a more rigorous treatment—
they present no type rules and establish no soundness
or completeness properties. We also give a notation for
types, and aim to make this information available to the
programmer.

2 The I-Loop Language

I-Loop (Implicitly typed Little object-oriented Ppro-
gramming language) is intended to be a core object-
oriented programming language. It includes notions of
class, multiple inheritance, object creation via new, sin-
gle dispatch of messages, and instance variables which
may be read and written and which can be protected
from outside access. To make the language simple we
have left out friends and modules amongst other fea-
tures. The grammar is as follows:!

ex=a|n|Av.e|lee|letz=cine
| l#tec|casecofl=e¢
e+ m|ey|ey:=e

| class s super p; of¢; inst yj=¢; meth m;=¢e;
| new ¢ | close e
xr € Var

nu=0]1]|2]...

In a class definition s is a variable bound to the self in the
method bodies €;, and p; refer to the supers in method
bodies and the initial values €; of instance variables.
The following artificially simple example defines a class
IntOrd with methods to read an object’s value and to
compare it against that of another object.

let
IntOrd = class self super
instx=0
meth
value = A_. self.x,
leq = Ao. (self «— value ()) <= (o « value ()
in...

In this example and elsewhere we use A_.e to de-
note a method with no argument, an abbreviation for

Az.e for some z not free in e. To invoke such a

1Some words on our notation. The “vector notation” m = e
is shorthand for m; = e, ..
shorthand for the same and indicates : will range over the elements

., m = e for some k; m; =e¢; is

of the vector. We use some informal conventions with variable
names. Variables z and z are generic. There are two distinct
kinds of names, method names m, and instance variable names y.
We assume there exist some standard built-in primitive functions
with names in the set B C Var.

method, we must apply it to some value; our con-
vention is to apply it to the empty object with no
methods or instance variables, written () and defined
as new (class self super inst meth). The I-LooP in-
jection syntax [# e tags the value of e with the la-
bel I; the case expression then uses the tag to de-
termine the appropriate case to be applied to the
value. The booleans and conditional are derived from
variants: true and false are defined as true # () and
false #£ (), respectively, and if e then e; else e5; stands
for case e of true=>A_. ey, false=>A_.e5. The close con-
struct is used by a method that wishes to return the self
or a super, preventing instance variables from escaping.?

Inheritance is explicitly expressed in I-Loop, and this
disambiguates in the case of multiple inheritance. Con-
tinuing the above example, we define a class BoolOrd
which inherits the value of its instance variable x and
method not from the simple class BoolValue, inherits
value from IntOrd, and redefines method leq.

.. let
BoolValue = class self super
inst x = false
meth not = A_. if self.x then false else true
in let
BoolOrd = class self
super bp of BoolValue, ip of IntOrd
inst x = bp.x
meth
not = bp « not,
value = ip + value,
leq = Xo. if self — value () then o « value ()
else true

2.1 I-Loor Types
The monomorphic types Typ of the language are

7 u=a|Nat|7—7" | [l:7] | Inst i Meth mg3
| Class st Inst i3 Meth mp

mp =mr | m:T

W on=ar |yt

where a type variable @ € TyVar can be either ap-
plicative, t € AppTyVar = {t;, ty, ...} or imperative,
u € ImpTyVar = {u1, us, ...}. This division of vari-
ables into two kinds is needed in the presence of state
and let-polymorphism, as in Standard ML. The set of
free type variables in a type 7is FTV(7); T is imperative
if FTV(r) C ImpTyVar. Along with the conventional
basic types of numerals and functions we include variant
types, from which e.g. the type of booleans is derived:

2 An implemented language might insert close implicitly and
keep it out of the official language syntax.

Bool = [true:1,false: 11, where 1 = Inst Meth is the
type of the empty object ().

The two novel types are the class types and the so-
called Inst-Meth types. An Inst-Meth type should be
thought of as a general type of objects. Inside a class def-
inition, the types of self and super are of this form, with
both the instance variables and methods visible. For in-
stance, super object bp in the definition of class BoolOrd
above is of type Inst x:Bool Meth not:1—Bool, since
it represents an object of class BoolValue with instance
variable x visible and method not.

Objects outside their class definition have only their
methods visible; they have an Inst-Meth type with no in-
stance variables. We let Inst ;3 and Meth mf be short-
hand types for an empty method or instance variable
list, respectively: Inst i3 = Inst i3 Meth, Meth mj3 =
Inst Meth mg3. The latter are the types of objects, e.g.
new BoolValue has the type Meth not:1—Bool.

Class types have the added feature of a distinguished
(applicative) type variable, by convention named st, de-
noting the type of self; the latter is not fixed by the class,
for in the case that the class is extended, the self will in
the future include more methods or instance variables.
Class types are thus akin to type operators on st, giving
the appropriate “open-ended” view of self [9, 12].

The type system of I-LOOP assigns expressions recur-
swwely constrained (rc) types of the form

ku=1\C

where C'is a set of type constraints—subtyping assertions
about pairs of (monomorphic) types, written 7 < 74.
This indicates that the variables in type 7 are required to
satisfy the constraints in C; since the rules will implicitly
enforce consistency of C, it makes sense to view 7\ C
as a type. As an example of an rc type, the type of the
IntOrd class will be shown later to be

Class st
Inst x : Nat
Meth value: t; —to,
leq : (Meth value : 1—Nat)— Bool
\ {st < Inst x:ty, st < Meth value:1—Nat}

Note st has two upper bounds, and this is equivalent to
a type expression

st < (Inst x :t2) A (Meth value: 1—Nat)

with A indicating a hypothetical greatest lower bound
type operation. I-LOOP is capable of expressing some
glb types, as above, as well as some lub types. Including
lub and glb as general type operators presents significant
difficulty [2], however, and these restricted forms fulfill
most of the need for lub and glb type operations.

The type schemes o are either monomorphic types or
quantified rc types:

ou=71|Va. k

These types are a straightforward generalization of
Hindley-Milner let-polymorphic types to incorporate
constraint sets. Since k = 7\ C can contain an arbi-
trary collection of constraints C'; an F-bounded quanti-
fied type [6] written V¢ < 7. 7/ may be expressed by a
polymorphic rc type Vt. 7/ \ {t < 7}.

Next we need to define when a set of constraints C' is
consistent. If C is consistent, 7\ C is a sensible type.
The definition of consistency we use is somewhat un-
usual: the constraints are considered consistent if they
are not inconsistent in any “obvious” way. To motivate
this definition, the following constraint system is obvi-
ously inconsistent

Chad = {1—Nat < t, t < 1—Bool}

because by transitivity 1—Nat < 1—Bool, and thus
by subtyping on functions, Nat < Bool, but this is im-
mediately inconsistent. Because this constraint system
is inconsistent, it makes no sense to write an rc type
such as t \ Cbad. The typing rules will implicitly rule
out these ill-formed rc types. If no such inconsistency is
found by applying these and other basic principles, the
constraint set is declared consistent. We formally de-
fine consistency by first defining a closure operation on
a constraint set that performs these simple deductions.
The definition of a closed set of constraints C' appears in
Figure 1. Most of these conditions are based on standard
subtyping principles [7]. In condition (v), if one instance
variable is a subtype of another, the types must in fact
be the same; this is because instance variables may be
both read and written. In condition (vii), the self-types
st are contravariantly related. This is because classes
are parametric in the as-yet unknown self, so the con-
travariance is as for function parameter types. CIl(C),
the closure of C is defined as the least closed superset
of C. The consistent constraint sets finally may be de-
fined as the ones in which the closure did not uncover
any immediate inconsistencies.

DEFINITION 2.1 (CONSTRAINT CONSISTENCY)

(i) Constraints of the following forms are immediately
inconsistent:

(a) 7 < 7/ where 7 and 7 have different outermost
type constructors;

(b) [1:r1< V71, if {I} ¢ {I'}; and
(¢) Inst y:7, Meth m:7,, < Inst y":7; Meth m':7;

if {m} 2 {m'} or {g} 2 {y'}.

If {T1§T2, TQSTg}gC,
If mn—1 <o €C,

iii) If [Li:ml<[l:m1€Cand {L} C{L}, then {r <7} CC.
i Inst i3 Meth m3 < Inst i3’ Meth m3’ € C, then {Inst i3 < Inst i3’, Meth mg < Meth mg’'} C C.
(v) If Instyim < lInsty,:7) € C and {yi} 2 {y;}, then {r; <7, 7] <7} CC.

If Meth m;=7; < Meth m; : 7] € C and {m;} 2 {m;}, then {r; < 7/} CC.
If Class st Inst i3o Meth mp; < Class st’ Inst i3) Meth m3; € C,
then {lnst i3y Meth m3; < Inst i3; Meth mp3;, st' < st} C C.

then 1 <71 € C.
then {m <m, rf <1} CC.

Figure 1: Definition of a closed constraint set C'.

(ii) A set of constraints C' is consistent if no constraint
in Cl(C) is immediately inconsistent.

We define the following notion of subtyping on consis-
tent rc types.

DEFINITION 2.2 (SUBTYPING RC TYPES)

7\ C < 7"\ C' provided that C’ is consistent and ei-
ther CI(C U {r < 7'}) C ClC"), or 7 = 7' and
Cl(C) C cl(C).

Stronger notions of subtyping could be defined, but for
our purposes this definition suffices. The main shortcom-
ing of this weaker form of subtyping is minor: it forces
“garbage” constraints to be added to C. For instance,
suppose we needed to show the subtyping

Inst z:Nat, 2’ : Bool \ @ < Inst z:Nat \ 0;

(for instance, if we had an expression in the former type
and wished to use subsumption to show it was in the
latter). We would instead use the valid subtyping

Inst z : Nat, 2’ : Bool \ §§
< Inst z :Nat \ {Inst z : Nat, 2’ : Bool < Inst z : Nat}

Since the added constraint never introduces any incon-
sistencies, it is garbage. We will compensate for our
weak notion of subtyping by having a simplification rule
to remove garbage.

2.2 The I-Loor Typing Rules

The typing rules for I-LooP are given in Figure 2; nota-
tion used in sequent judgements includes the following.
A type environment A is a mapping from variables to
type schemes; we use the notation (A, z:¢) for the en-
vironment extending A by assigning type scheme o to the
variable z. Given a type environment A, the proof sys-
tem assigns to an expression e a rc type 7 \ C, written as
the type judgement AF e : 7\ C, under the condition
that C' is consistent (as mentioned previously, each rule
implicitly enforces consistency on all constraint sets used

in the rule).®> The rules differ in several ways when com-
pared with standard typing rules. Each type assigned
to a term is an rc type, with a set of constraints C'.
In rules with multiple assumptions, the conclusion type
constraints are the union of the branches. Since all con-
straint systems in rule conclusions must be consistent,
these unions are required to yield consistent constraint
sets if the rule is to be applicable. Other presentations
of constrained type systems [18, 2, 14] do not require
local consistency, so the constraints in the rules have
both a hypothetical and assertional component: they
are hypothetical in that they may be inconsistent, and
they are assertional in that they assert properties of the
type if they are consistent. We believe the meaning of
constraints is made clearer by implicitly enforcing their
consistency, thus removing the hypothetical aspect of
constraints and justifying their placement on the right
of the turnstile as a positive assertion.

We illustrate the I-Loop typing rules by showing how
the class IntOrd defined previously is provably typed as
follows:

Ag F, class self super
inst x=0
meth
value = A_. self.x,
leq = Xo. (self «— value ()) <= (o « value ())

3We write also A by, e; :7; \ C; to indicate several type judge-
ments provable in the same environment. Programs are type-
checked in the initial environment Ay assigning type schemes to
the built-ins in B; we let k1, e: x abbreviate Ag k1, e: &, since all
typings should occur in the presence of assumptions Ag. A substi-
tution on {a} is a map ¥ € TyVar — Typ which is the identity on
TyVar \ {a} and maps ImpTyVar to imperative types; a renam-
ing ® of {a} is a substitution on {a} with Codom(®) C TyVar.
Following Tofte [27] we form type schemes by making the sets
of type variables we generalize over dependent on the expansive-
ness of the expression: an expression is erpansive if and only if
it is not a value; in [-LOOP values are the identifiers, numerals,
A-abstractions, classes, and injections of values. The definitions of
these sets are

Clos(t\ C, A) = (FTV(r)UFTV(C)) — FTV(A)
AppClos(7 \ C, A) = Clos(7 \ C, A) N AppTyVar

where the functionality of F'TV is extended as usually to constraint
systems, rc types, type schemes, and type environments.

Abpletz=¢iIn e':T'\CIDCUC'

where {a} = {else Clos(t\C, A)

(New) Ak e:Class st Inst i3 Meth m3 \ C

Aby ek, k<K

(Sub) Abpe:x

. Abpe:k

(Sunp)fikLe:Sm”ﬂﬁkdhng (N“m)14kLn:Nat\0
Alzy=r A(z) =Va.k, Vis a substitution on {a}

(Var) Abpz:7\0 (Pvar)Al—Lz:\Ifn
Ajz:thye:mT\C Abperim—n \C, Atpe:m\Ce

(Abs) Aby Az e:r—=r"\ C (App) Abpeiea:m \CrUGC,

(Inj) Abpe:7\C (Case) Abpe:[L:m1\C, Aty ei:imi—1\ G
AbplFe:1:7I\C AI—Lcaseeofl¢:>e¢:T\CUUiC¢
Abpe:lnsty:r\ C . Abper:Insty:r\ Ci, Abye:m\ Cs

(Read) Abpey:7\C (Write) Abperyi=er:t\CLUC,
Al—Le:Methm:T\C Al—LezlnStz’ﬁ'Methmﬁ\C

(Msg) Abre—m:7\ C (CIOSG)AI—L close e: Meth mg \ C

(Let) Abpe:T\C, A z:Ya.r\Chlrpe':7"\C', &isarenaming of {a}

if eis expansive then AppClos(t\C, A)

A Fr, new e: Meth mg \ C U {Inst ;3 Meth mg < st}

A, pi:Inst i8; Meth mfB; by, ej:7; \ C]'

A Fy ei: Class st Inst i3, Meth mg; \ C;

(Class) A, pi:Inst i8; Meth mg;, s:st by ep: 7 \ CF

c=C;uciucy

A+, class s super p; of e; inst y; =¢; meth my; = e : Class st Inst y;: 7; Meth my 7 \ C

provided T; are imperative and C U {Inst y;:7; Meth my:7x < st} is consistent, where

Figure 2: Typing rules of I-Loop.

: Class st
Inst x : Nat
Meth value :t; —t-,
leq : (Meth value: 1—Nat)— Bool
\ {st < Inst x:ty, st < Meth value:1—Nat}

We assume that Aj assigns the type Nat—Nat—Bool to
the infix function <=; for brevity we drop Ay from the
judgments in this example. Type-checking the initializa-
tion of instance variable x is trivial: by (Nat) we have
F. 0:Nat\ . Recall the class expression binds self in
the method definitions; they are now type-checked un-
der the assumption (self :st). Starting with the value
method body, rule (Var) yields the obvious type for self:

self :st by self:st\ 0

To apply (Read) we need the instance variable x to be
present in the type of the object; according to defini-
tion 2.2 we can construct a supertype of st \) by adding
a constraint (provided the resulting system is consistent,

which it is):
st\ 0 < Instx:ty\ {st < lInstx:ty}

so we can lift the rc type of self to a type that has the
field x using (Sub):

self :st k-, self : Inst x:ty \ {st < Inst x:ts}

We chose a new type variable ty for the type of the in-
stance variable x because simply selecting x from self says
nothing about the type of x. By (Read),

self :st Fp, self.x:ts \ {st < Inst x:to}

Since nothing further is known about t; at this point,
the type variable remains unconstrained. The method
parameter type t; is also unconstrained since the pa-
rameter is not used. The full method body may then be
typed by (Abs):

self :st -, A_.selfx:ty—ty \ {st < Instx:ts}

It would seem that the natural type to give value would
be 1—Nat, but the method body itself poses no require-
ment at all on the argument, and only requires t; to be
the type of x, whatever that type may be.* Turning to
the type-checking of the leq method, the message send
self «— value 1s typed similarly to self.x; the difference is

(Msg) is used in place of (Read):
self :st, 0:t3 by, self «— value:ty \ {st < Meth value:ts}

The above proof was “lazy” in the sense that from in-
spection of the program we can see a prior: that the
type of self «+— value must be 1—Nat: it is applied to ()
and the result is then compared as a Nat by <=. Thus,
we could have used that type in place of t4. The infer-
ence algorithm, presented in the next section, is “com-
pletely lazy,” it never looks at the context and instead
always invents a new variable as above. A key result
of the paper—completeness of type inference—implies
that there is no harm in being completely lazy. We will
at least be somewhat eager at this point by adding con-
sistent constraint t4 < 1—Nat; with this constraint and

(Sub), by (App) we obtain

self :st, o0:t3 -, self «+— value () :Nat
\ {st < Meth value:ts, t4 < 1—Nat}

The proof of the type of the other argument of <= is
almost identical, with the conclusion

self :st, o:t3 k-, 0 «+— value () :Nat
\ {ts < Meth value:t;5, t; < 1—Nat}

The type of the leq method may finally be obtained
by applying (App) twice, followed by (Abs).

self :st F, Ao. (self « value ()) <= (o «— value ())
:t3— Bool
\ {st < Meth value:ts, t4 < 1—Nat,
ts < Meth value: t5, t5 < 1—Nat}

We are now able to apply the (Class) rule and give
a type to the whole class expression. The first premise
of (Class) guarantees the superclasses are of appropri-
ate Class types, vacuously satisfied here. The second
premise guarantees the instance variable initializations
are type-correct under the assumption that the super-
class objects p; have the Inst-Meth types corresponding
to the types of their classes; for our example this was
trivial since F; 0:Nat directly.® The third premise is
similar but concerns method bodies, where self has type

4Indeed in our example committing to result type Nat would
prevent the subclass BoolOrd from type-checking: its method value
should return a boolean, the type of its x.

5Since the instance variables 7; are mutable, their types must be
imperative as per Tofte’s type discipline [27]; Nat trivially satisfies
this—it contains no type variables.

st. We just finished proving these requirements for the
two methods, value and leq. From these premises we
may apply (Class) to obtain the following type for class
IntOrd:

k. class self ...
: Class st
Inst x : Nat
Meth value: t; —to,
leq : t3— Bool
\ {st < Inst x:tz,
st < Meth value : t4, t4 < 1—Nat,
ts < Meth value:t5, t5 < 1—Nat}

In rule (Class) there is a final constraint consistency
proviso; this condition enforces “new-ability,” i.e. it en-
sures the new operation will succeed for this class. With-
out this proviso it would be possible to define a class
that used the self in incompatible ways, such as self.y
when there was no instance variable y defined. This re-
striction is in fact not necessary in the (Class) rule, for
such errors would be caught by (New). This condition
is added for methodological reasons—the programmer
is unlikely to define a class for which new always fails.
However, there are reasons to consider allowing such in-
complete classes—for instance, it may be desirable to
define abstract classes which use methods that have not
yet been defined (in Smalltalk, this is accomplished by
defining the method but with the dummy body self sub-
classResponsibility which flags an error if the method is
not overridden). Special class definition syntax, e.g. ab-
sclass, could be introduced for these inherently abstract
classes, and the new-ability constraint dropped for them.
This would increase the usefulness of programming in a
mixin-style methodology in I-LoopP—mixins are often
fragments that are ill-formed as classes per se.

The (Class) rule still allows more flexibility than most
class typing principles. There is no requirement that the
subclass type match its superclass type(s) [5]. In terms
of I-LooP, a subclass matches its superclass if a sub-
typing constraint between their class types is consistent
when they share the same self type st; for instance, class
BoolOrd matches class BoolValue since all methods and
instance variables of BoolValue are inherited by BoolOrd,
and their types remain unchanged (as functions of the
self type) while additional methods are defined. Since
we do not enforce this matching requirement, a subclass
can completely change the type of, or even not define,
a method or instance variable of a superclass. Both of
these examples in fact occur in Smalltalk class libraries
(the latter via method body self shouldNotlmplement),
so it does not make sense to further restrict the class
rule to disallow this; however, if so desired, adding the
constraints

Inst y; - 7; Meth m; 17 < Inst :3; Meth mg;

to the conclusion of the (Class) rule would enforce
matching. Returning to our earlier example, class
BoolOrd also inherits from IntOrd, but does not match
it—the type of the instance variable x is changed from
Nat to Bool. However the newability proviso of the
(Class) rule will prevent an action that could be unsafe,
like changing the result type of instance variable x from
Nat to Bool while having another method leq directly or
indirectly use x and expect a Nat result. In our exam-
ple leq had to be overridden to prevent this clash from
arising.

The type obtained for IntOrd can now be transformed
to the more concise form given at the beginning of the
section using the simplification rule (Simp); specifically
this rule allows the bound of a type variable to be substi-
tuted for the variable itself when certain conditions are
met. The formal definition of Simplified(x, A) is techni-
cal and is found in Appendix A, but informally we can
say it is safe to replace a type variable which only appears
in the type in “contravariant” (or “negative”) positions
by its upper bound, provided the bound is unique and
does not mention that variable. The exact definition of
contravariant position in a rc type is rather involved,
but it generalizes the conventional notion based on the
observation that the function type 7— 7' is contravari-
ant in the argument type 7 and covariant in the result
type 7/. Thus for instance the type variable ts is only in
contravariant position in the type

Class st Inst x: Nat Meth value :t; —t5, leq: t3— Bool

and therefore it can be replaced by its upper bound
Meth value : t5. In the resulting type

Class st
Inst x: Nat
Meth value : t; —ts, leq : (Meth value : t5)— Bool

the variable t5 is in negative position, so we can replace
it in turn by its upper bound 1—Nat. A similar transfor-
mation involving the type variable ty yields the initially
claimed type for IntOrd.

The type we obtained for the class IntOrd sets only
upper bounds on the self type st. As we saw, each upper
bound on a type variable ¢ is added to the constraint sys-
tem as a result of some requirement that an expression of
type represented by ¢ must meet. Dually, a lower bound
on t corresponds to the type of an itmplementation, an
actual value that may have to be used as a member of
type t. Thus the transitivity clause (i) in Figure 1 can be
viewed as enforcing the rule that implementations must
meet their stated requirements. A class expression in-
troduces requirements on self, since methods make use
of features of self; but it does not constrain the imple-
mentation of self as it is open to further extensions and

modifications in the possible subclasses. Thus only up-
per bounds are placed on st when typing a class, con-
firmed by the example. The implementation is defined
when we create a new object of the class: this object
must be a valid implementation of self. The rule (New)
expresses this by adding a lower bound on self type st,
ensuring the instance variables and methods defined by
the class indeed are an implementation of self. If new
is applied to the IntOrd class, it adds such a constraint
on st and yields the following type (some constraints re-
sulting from taking the closure of the constraint set are
shown as well):

. new (class . ..)
:Inst x : Nat
Meth value: t; —to,
leq : (Meth value : 1—Nat)— Bool

\ {st < Inst x:ty, st < Meth value:1—Nat,
(Inst x : Nat
Meth value : t; —t-,

leq : (Meth value : 1—Nat)—Bool) < st,

Nat < ts, to < Nat, 1 <t}

Only now does the result type ts of method value obtain a
lower bound of Nat; this bound will be Bool for an object
of class BoolOrd which redefines the instance variable x
as a boolean. But a result type Nat is also what was
required here by the use of value in leq, appearing in the
closure of the constraint set as an upper bound on ty; we
encourage the reader to verify that the closure is indeed
consistent.

Rule (Simp) also allows for the removal of all un-
reachable constraints from the constraint system of an
rc type. Intuitively, a constraint is unreachable if it can-
not cause an inconsistency to appear in any legal use of
the rc type. For example, consider a term e for which
Foe:t\ {Nat < t,t < Nat}. The constraint system in
this example is consistent—its closure also contains the
(consistent) constraint Nat < Nat. However, once the
consistency of the system is established, the constraint
t < Nat can be ignored. This is because inspection of
the typing rules shows that the type variable t can only
get new upper bounds in all possible contexts in which
e can appear; these new upper bounds can only produce
inconsistent constraints when compared (by transitivity)
to the old lower bounds of t, and hence the old upper
bounds are irrelevant. Similarly, in the IntOrd object
type given above it turns out that all of the constraints
on st and t;, as well as the upper bound on t;, are un-
reachable; this allows us to apply (Simp) to obtain

Inst x: Nat
Meth value : t; —Nat, leq: (Meth value: 1—Nat)— Bool

\ 0

The rule (Close) is used to hide the instance variables

in the self. If a method returns the self s, it should explic-
itly return close s to hide the instance variables. Note
this syntax leaves open the possibility of not hiding the
instance variables when the self is returned. This may
in fact be advantageous for the programmer upon occa-
sion, but in our case an explicit hiding syntax was used
because to implicitly hide would add an extra degree of
complication to the language definition that we wished
to avoid.

Some comments are in order about let-polymorphism.
(Let) gives let-bound variables polymorphic types in the
assumption list, and (PVar) in turn allows instantia-
tion of these polymorphic types. This is a straightfor-
ward generalization of ML-style let-polymorphism® to
constrained type systems [10, 14, 2]. The technical re-
striction of quantification over imperative types to the
nonexpansive expressions is the standard solution [27]
recast in this setting, first shown sound in [11]. The
let construct is very important for defining classes. In
the example, classes are let-defined, meaning each use
of one of the classes (extension or object creation) will
get a fresh set of type variables via (PVar), and this will
allow the class to behave in different ways each time it
is used.

2.3 Type Inference

We now define the type inference algorithm and prove it
is complete, i.e. if a program has a type derivation the
inference algorithm will infer a type for it. Without this
property, the programmer runs the risk of being stuck by
writing a typable program that the inference algorithm
fails to find a type for. The classic method for establish-
ing completeness is to prove a principal type theorem,
stating that any derived type is in fact a supertype of
the inferred type. We take a more primitive path, since
our rules are too weak to have a principality property.
We first define a set of “inference” typing rules which are
special forms of the general rules constructed so as to be
(almost) deterministic, in that all type derivations using
these rules having the same conclusion are isomorphic.
These rules then serve to define the inference algorithm.
We then prove these rules are complete: all proofs of
typing using the general rules can be transformed into
proofs in the restricted inference rules, meaning the infer-
ence algorithm will infer a result. A similar strategy was
used to prove completeness of a type inference algorithm
for I-Soop [11]. The I-LooP inference rules appear in
Figure 3. It is easy to verify by inspection that each
inference rule is a restricted form of the combination of

6 Alternative systems for typing polymorphic references could
be considered. For instance inference of effect constraints [26] ap-
pears to be orthogonal to the inference of subtyping constraints in
I-Loor.

(Sub) with a single general rule. So, the inference rules
are a restricted version of the general rules. Inspection
also should convince the reader that given proofs of all
subterms of a term, with the exception of (Simp) there
is only one rule that may next be applied, and this rule
may only be applied in one manner (modulo renaming
of variables). So, the rules nearly define a deterministic
algorithm. We get around the problem with (Simp) by
showing the rule is not necessary.

LEMMA 2.3 (SIMPLIFICATION REMovAL) If A F™ ek
then this proof may be transformed to a proof A FH*f ¢ : &/
that does not use the (Simp) rule.

PrOOF SKETCH: See Appendix A. |

THEOREM 2.4 For all terms e and environments A, it is
decidable whether there exists a k such that A Fi* e: k.

PRrROOF SKETCH: First, by Lemma 2.3 it suffices to
show it is decidable to find a (Simp)-free proof. By in-
spection of the rules, there is only one non-(Simp) rule
for typing each expression construct. By further inspec-
tion, the only nondeterminism that may be introduced
in rule application is the choice of type variables used
in rules (Class), (Abs) and (PVar). We thus choose
canonical proofs that use fresh variables in every place
possible. If a proof exists, there clearly must then be
a corresponding canonical proof. For expression e the
canonical proof is unique modulo a-conversion. Thus a
decision procedure may be defined for constructing such
a canonical proof. The algorithm fails when an inconsis-
tent constraint system is obtained when combining the
constraint systems inferred for subterms, and detection
of such inconsistencies is trivially decidable. a

We now relate the inference rules to the general rules.

THEOREM 2.5 (COMPLETENESS OF TYPE INFERENCE)
Given an environment A and an expression e, the typing
judgement A b, e: & is provable for some « if and only
if A= ek’ is provable for some &'

Proor SKETCH: If A e¢:k'isprovable, A by e:kis
obviously provable as well; each inference rule is a special
case of a combination of (Sub) and a general rule.
Conversely, a proof of A F, e:k can be transformed
into a proof of A F** ¢: £’ in several stages. First, each
assumption z : 7 added inside the proof by the rules
(Abs) or (Class) is replaced with the assumption « : ¢ for
some fresh ¢, and the constraint {t = 7} (shorthand for
{t <7, 7 <1}) is added to the constraint system of each
judgement. A use of the (Sub) rule is then used after
each (Var) rule for z to lift : ¢ to z : 7; an application
of (Sub) also follows (Abs) to reduce the domain ¢ of the

(Simp) A ek
YIP) AERT ¢ Simplified(s, A)

(Num) T n:Nat \ 0

A(z) =Va. &k,
AR g Pk

Al_iLnf €1 :7T1 \ Cl,

Alz) =T ® is a renaming of {a}
AFM 27\ 0

A z:itFMe:r\ C

(Var) (PVar)

6217’2\02

(Abs) AFM dz.et—7\ C (App) AFM er ea:t\ CLUCy U{m < mo—t}
inf inf . o\
(Inj) AI—iLnfe.T\C (Case) AI—‘L e:7\ C, ei:7i \ Ci
AR e LTI\ C Artcase e of li = et \CUr <[4 :t; U, (CiUfr <ti—1})
AFMe:r\ C L AR e i \Cr, eaim \ Co
(Read) AFM eyt \CuU{r <Insty:t} (Write) AFM eryi=es:t \C1UC U {r < Insty:t, m <t}
AFMe:r\ C AFMe:r\ C

L
(Mse) AR ee—m:t\ CU{r < Meth m:t} (Close) AR close ¢ : Meth mr \ C U {r < Meth mr}

AFMe:r\ C, Az Na. T\ CHM e : 7'\ C'
AP letz=cine 7"\ CuC’

if eis expansive then AppClos(7\ C, A)

(Let) where {a} = {else Clos(T\ C, A)

AFMe:r\ C

(New)

AR e\ G, A, pi:pt, B e]‘:T]‘\C]’,

AF™ new e¢: Meth mr \ C U {r < Class st Inst ir Meth mr, Inst ir Meth mr < st}

A, piipt, sist M epime \ Cf

(Class)

A F class s super p; of ¢; inst y, = ¢, meth m; = ¢y : Class st Inst ;- u, Methm; 7 \ C

provided C U {Inst y;:u; Meth m: 7« < st} is consistent, where

C = aUC_]'U Cy U {r; < u;} U {r < Class st Inst ir; Meth mr;} U {Inst ir; Meth mr; < pt;}

Figure 3: Type inference rules of I-Loop.

A-abstraction back to 7, and similarly with the (Class)
rule. A similar transformation is then used to convert
each substitution ¥ in the (PVar) rule into a renaming,
replacing each type 7 in the codomain of ¥ with fresh
type variable ¢ and adding the constraint {t = 7} as
above. Finally, the proof is inductively transformed from
the leaves to the root, replacing each general rule with
its inference form and bubbling to the root uses of (Sub)
in the proof. The final form is an inference proof of
A Fy e:k with a final (Sub) step, and the proof with
this final step removed is an inference proof. a

Thus from Theorems 2.5 and 2.4 we may conclude that
every program typable under the general rules has a type
inferred by the type inference algorithm.

3 Semantics of I-Loopr

We have established completeness of the type infer-
ence algorithm, but more basically we need to show the
I-LooP rules are sound, namely that properly typed
programs never have run-time errors. We give seman-
tics to I-LooP by translation into a more basic lan-
guage, I-SooP, which lacks object-oriented features but
includes records and reference cells. We first define the
I-SooP language and type rules. An operational seman-
tics and type rules for I-S00P can be found in [11], along

with proofs of subject reduction and soundness of the
I-SooP type system. In this paper we only present the
I-SooP type rules, taking their soundness as given.

We translate I-LoOP terms, types, and judgements
into I-SooP by three translation functions. Then, we
show a provable I-Loopr judgement translates into a
provable I-Soop judgement, and thus since I-Soop is
type-sound, I-Loop is also type-sound. The I-Loop
type rules were directly inspired by the untyped transla-
tion, so the translation serves more than merely to prove
soundness, it provides for an understanding of I-Loop.

3.1 The I-Soopr Language and Type System

I-Soop is very similar to I-LooP: it has rc types, and
the typing rules are of a similar form. Since there are
significant parallels between the two languages, the de-
scription of I-SooP will be terse. Many conventions used
for I-LooPp will also be used for I-Soop without explicit
mention.

Var >z
Num3sn:=0]1]|2] ...
Exp de =z |n|Az.e|ee]|letz=cine

| {l=e}|el]|casecofl=ze |l #e

The 1dentifiers of the I-SooP built-in functions are B =
{pred, succ, is_zero, ref, | set} C Var.

(i) f{rn <7, <} CC, then <1 €C.
(i) Uri—rf <m—m € C,then {o <7, 1f <m}CC.

(i) H{L:m} <{l:7 e Cand {} D {I;},

then {r; <7/} CC.
(iv) M [li:m1 < [l:7]1€Cand {Ii} C {i,},

then {r; < 1/} CC.
(v) Irref<mrefe O then {11 <, »<n}CC.

Figure 4: Definition of when I-SooP constraint set C' is
closed.

The new syntax found in I-S00P missing from I-LooPp
includes records and reference cells. The syntax for
records is standard. Imperative programming is allowed
in I-SooP via the “ML school,” where normal variables
z are immutable as in a functional language, and ex-
plicit reference cells, created by x =ref e, may then be
assigned to via set {cell = z,val=¢e} and read from via
lz. Note reference cells are assigned by passing the set
function a record; this notation is used for convenience
of the technical presentation.

The monomorphic types of I-Soop are

TyVar 3 a ==1 | u

Typ S71uo=a|Nat|r—=7" | {7} | [L:7] | 7ref
Definitions of closure and consistency are very similar
to the related I-LooP concepts, so only the main defi-

nitions will be given. The closure condition for I-Soop
constraint sets is defined in Figure 4.

DEFINITION 3.1 The following I-SooP constraints are
immediately inconsistent:

(i) 7< 7’ where 7 and 7" have different outermost type
constructors;

(i) {1:7} <{l': 7'}, where {I} 2 {l_’}, or
(iif) [1:71 < [:7'1, where {I} ¢ {I'}.

Definitions of rc type and subtyping for I-SooPp are
direct analogues of the I-LooP definitions. The initial
type environment Ag assigns the following type schemes
to the I-SooP built-ins:

(is_zero : Nat— [true : {}, false : {2}1],
pred : Nat—Nat, succ : Nat—Nat, ref : Yu. u—u ref,
l:Vt. tref—t, set : Vt. {cell : tref,val :t}—t)

The typing rules for I-SooP are given in Figure 5. No-
tation used in the rules has the obvious analogue with
I-Loor.

3.2 The Translation Functions

First we give the semantics of I-LooP terms by a map-
ping into I-Soop. The translation of terms is at the

Abse : K, k< K
(SUb) Abse : k'
(Num) Nt \ 0
Alz)=T7
V) Tz i\d
A(z) =Va.k, ¥ is asubstitution on {a}
(PVar) Absz : Uk
Ajzithse: '\ C
(Abs) AbsAz.e : 7—1'\ C
Abser : 7=\ Cy, Abser : 7\ Cs
(App) Al‘s €1 €2 T,\Cl UCQ
. AbFse:7\C
) I T#e [l:71\C
(Case) Abse : [Li:m1\C, Absei:m—1\ G
b< case e of ;=¢; : T\CUUZ.C1‘
Abse : {l:7}\ C
e AreT: 0
(Record)A'_S i\ Ci
Abs{li=e:} s i P\ Y, G
(Let) Abse:7\C, A z:Va.r\Chrsge : 7'\
) Afcletz=cine : 7\ @CUC
where @ is a renaming of {a},
(@ ¢ if e is expansive then AppClos(r \ C, A)
Y= else Clos(t \ C, A)

Figure 5: Typing rules of I-Soop.

top of Figure 6. The core idea of the translation is the
classic encoding of objects as records, classes as func-
tions from the self to a record, and new as a fixed-point
operation [15]. However in order to get a general trans-
lation that works in a call-by-value setting, and incorpo-
rates instance variables and their initialization and hid-
ing, more structure is required. Objects after translation
are records of the form

Ao {inst={y;=%¢;}, meth={mp=¢;r}}

i.e. a (frozen) record consisting of two sub-records, inst
containing the instance variables and meth the methods.
Observe that objects in fact contain the instances; the
type translation will disallow access to instances in ob-
jects even though they are present. Each e¢; is a reference
cell. The outer freeze operation is necessary to allow a
call-by-value fixed point to be taken. Given this expla-
nation of objects, the translations of message send and
instance read and write should make sense. The close
operation is a no-op execution—just as object instances
are in fact present, closing the self only restricts typings;
new translates as a fixed point as expected.

TERM TRANSLATION:

[e—m]=([e] {}).m.eth.m
ley]="1(([e] {}).inst.y)
[eryi=e2] = set {cell=([e1]{}).inst.y, val =[e2] }
[new] = Y([e]{})
[closee] =[e]
[Az.e] = Az.[e
[cc1=T11<]

[letz=cine']=letz=

[class s super p; of ¢; inst y; = ¢; meth my =€]

A let pf =[e;]{}inlet p;=p{ (A_.Q)in
let y={y; =ref[e;]}in
As. let p; = p? (s)in A_.{inst=y, meth={mp =[er]}}
where Y =' Ay. (Ax.x x) Ax. Az.y (x x) z, and Q =Y (Ax.x)

TYPE TRANSLATION:
[Class st Inst i3 Meth mg]
(}—st—[Inst i3 Meth m3]
[Instig Methms] = { }—{inst: [:3], meth : [mB]}

. o if if=a
[[Zﬁ]]_{{yiz[[ﬂ]]ref} if B=Yyi:m
o if mf=ao

-

{mi:[n]Yy if mf=min

JUDGEMENT TRANSLATION:

[r<I=[r]1<["]

[{r<~}1=A[-1<[~'D
[Va.r\ C]=va. [r]\[C]

[ziioi b et \C]=zi:[oi] Fs [e]: [\ [C]

Figure 6: Semantics of I-Loop by translation to I-Soop

The least intuitive aspect of the translation is the
translation of classes. To better understand, first con-
sider the following simpler (but incorrect) version.

[class s super p; of ¢; inst J; =¢; methmy, =¢; | =

As.let p; =p; (s)in
A_{inst={y;=ref [¢; |} meth={mp =[ex]33

A class here is a function from self s to an object, where
the object bodies have access to p; for the superclasses.
Objects are then created by taking the fixed point of
such a class. The problem with this translation is ob-
jects produced will re-initialize their instance variables
every time a method of the object is invoked. The ac-
tual translation hoists the initialization of the instances
outside to prevent this.”

"The shallow nature of the I-SOOP type system imposes addi-

The translation of types and judgements is given at
the bottom of Figure 6. The base types and func-
tion types translate homomorphically, so are not given.
The Inst-Meth types are the types of objects with in-
stance variables visible; since objects are frozen inst-meth
records, as described above, object types are translated
as frozen inst-meth record types. Compared to standard
interpretations of object types, this type may seem un-
usual: since the self type may be used in objects, object
types are usually interpreted as recursive types (see e.g.
[12, 3]). In I-SooP there are no recursive types; the
recursion is implicitly found in the constraints imposed
on the individual method types, and these constraints
may be circular. Classes are frozen structures that take
the self as argument and return records, so class types
are frozen functions from self type st to an object type.
This translation gives a fixed type st to the self in the
class. This might appear dangerous, as it would seem
all extensions to this class and all objects made by the
class would share the same self type. However classes
are intended to be defined via a let-expression, as in the
IntOrd example, and the class will thus have a polymor-
phic type inferred and each object and subclass will have
a different version of st.

3.3 Type Soundness of I-Loopr

We now sketch how type soundness may be proven for
I-Loop. Full proofs are omitted for lack of space. The
obvious statement of soundness is: each provable I-Loop
judgement translates to a provable I-So00P judgement.
However this is not true for all I-LooP proofs, since
I-LooP is in some ways stronger than I-SooPp in that
it has a simplification rule. What we do instead is show
proofs without (Simp) translate to I-SooP proofs, and
then use the completeness property of I-LooP to show
this means all I-LooP proofs are sound.

LEMmMA 3.2 (RESTRICTED I-LoopP SOUNDNESs) If
Aty e:7\ C and this proof does not use rule (Simp),

then [A]Fs [e]:[7]1\[CJuC".

Proor SkETCH: The proof proceeds by showing that
for each I-LooP inference rule, there is a I-So0P deriva-
tion that starts with the translations of the hypotheses
of the I-LooP rule and ends with the translation of the
conclusion of the rule. For most of the I-Loop rules
this fact follows directly. The (Class) rule has the added
complication of needing a typing for Az.Q; with will re-
quire extra constraints be added to type this function,

tional restrictions on the form of translation that may be used; in
[12] we presented a simpler translation of classes that in addition
allows s to be used in instance variable initializations. That trans-
lation could in theory be used here, but objects would necessarily
have imperative type, restricting polymorphism.

the source of the C’" above. In the (New) rule, typing Y
will produce similar extra constraints. a

THEOREM 3.3 (I-LooP SoUNDNESss) If k-, e: %, then
F< [e]: ks for some Ks.

PROOF SKETCH: By completeness of the type infer-
ence rules (Theorem 2.5), H* ¢ : &/ ; then, by Lemma 2.3,
Fir* e:x! in a proof not containing any (Simp) steps.
Then this proof may be easily transformed into a non-
inference proof . e:&! without (Simp), and finally,
Lemma 3.2 applied to show k< [e]: ks for some k<. 0O

Thus by soundness of I-SooP the evaluation of [e]
cannot get stuck, and hence no “message not under-
stood” errors will occur during execution of I-LOOP pro-
grams translated into I-Soop.

4 An Example

We now show the I-LooP inference algorithm function-
ing on a larger example. Consider the following I-Loop
program.

let View = class self super
inst dep = None # ()
meth
doall = Af.
f(self);
case self.dep of
None = A_. (),

Some = Ad. (d « doall f; ()),
setDep = Av. (self.dep :=Some# v; ())
let GView = class self super p of View
inst dep = p.dep
meth
doall = p + doall,
setDep = p « setDep,
draw = A_.)
let vl = new View inlet gl = new GView in
let g2 = new GView inlet g3 = new GView in
gl « setDep v1;
g2 «— setDep g3; g2 « doall (Aob. ob «— draw ())

In this oversimplified example, these classes are Views
in name only; other methods and instances would be
present to perform various view functions. We focus
here on a dependency mechanism of the view system:
one view may contain other dependent views, and it may
be necessary to perform some function for each depen-
dent of a particular view. To make it simple, here we
limit ourselves to the case where each view here has at
most one dependent dep. If dep is None # (), there is
no dependent, and if dep is Some # obj, then obj is the
dependent view object. The doall method takes a func-
tion f and applies it to the view itself before passing it

to doall of its dependent view, which in turn passes it to
its dependent, etc. GView is a subclass of View intended
to be a graphics view with a draw method of some sort;
here we simplify again—draw does nothing.

What is interesting is that it is not possible to deter-
mine in advance how the programmer intends this code
to behave when the View class is extended with new func-
tionality in subclasses. There are two possibilities. The
dependent views could be heterogenous classes, and thus
the function passed to doall must only work on methods
defined in View. The first message send, gl + setDep v1,
reflects this approach: vl has no draw method, so in a
message send gl +— doall f, f cannot invoke draw on its
argument. This is the “subclasses are subtypes” philos-
phy: the type of gl’s dep has been lifted to be a View.
Alternatively, the programmer may intend to have a se-
ries of homogenous nested view classes, as in the message
sends to g2. The function passed to doall should be able
to invoke all of the methods defined in GView, in partic-
ular draw. This is what is gained from the “inheritance
is not subtyping” philosophy, not requiring the type of
dep to be fixed as a View [5, 9].

In previous work [12] we gave a typing system which
allowed the programmer to choose between these two
behaviors by the type given to the doall method. How-
ever, in that system the programmer was forced to allow
only one of the alternatives for the View class hierarchy,
based on the type given to the class. What is needed is
some sort of “principal” type that accommodates both
approaches; and this is exactly what our inference algo-
rithm accomplishes. In particular, for the above program
the following type scheme is assigned to View by the rule
(Let) (after applying (Simp)):

Vst, u, t1, to, t3, ta, t5, te, tr.
Class st Inst dep : u Meth doall : t; —1,setDep:t;—1\ C

where C' is the constraint system

[None:11 < u
t1 S st—t3
st < Instdep:ty
t4 < [None:ts, Some: Meth doall : t; —t¢]
st < Instdep:tr
[Some:ts] < t7

The only requirements on st are on its instance varible,
is not found anywhere. In
a similar way, we can infer the type scheme inferred for

GView to be

Vst, u, t1, ta, ta, ta, t5, ts, t7.
Class st Inst dep : u
Meth doall :t; —1,setDep:to—1,draw :ts—1 \ C

because e.g. self < doall. ..

It turns out that the constraint system in the type of
GView is identical to the system of View—the type of

the added method is trivial and does not introduce new
constraints.

When we create instances of View and GView, we
“tie the knot” between what each class implements (the
Inst ... Meth ... portion of the class type) and what
each class requires (the constraints on type variable st).
This introduces new constraints; v1 has the inferred type

Meth doall : t} —1,setDep: th—1 \ ¢’

where C' is

[None:11 <

[Some:ty,] <
u’ < [None:tf, Some: Meth doall : t| —t}]
ty < Meth doall : t] —tf
t] < (Instdep:u’

Meth doall :t] —1, setDep : t),—1)—t}

As View and GView are let-bound, the type variables of
constraint system C' are generalized, and each use of View
or GView gets unique instances of these variables via the
renaming of the (PVar) rule. We indicate this by the
primed variables; we use double primes in the inferred
type of gl:

Meth doall :t/—1,setDep: ty—1,draw:tg—1\ C”

where C' is

[None:1] < wu

[Some:ty]1 < wu”
u” < [None:tZ,Some: Meth doall : t{ —t]
tfy < Meth doall : t} —t§
tf < (Inst dep:u” Meth doall :t/ —1,

setDep : t§—1,draw :t{—1) —ty
Now, we may perform gl « setDep vl, as in the ex-
ample. When we do this, new constraints are introduced
on the types of the doall and setDep methods of gl; a
new constraint inferred is that the type of vl must be a
subtype of the domain type of method setDep of gl:

Meth doall :t] —1, setDep:th,—1 <t

Since ¢4 already had an upper bound in C”, by transi-
tivity we have

Meth doall : t]—1,setDep : t,—1 < Meth doall : t] —tf
which implies (cf. Figure 1) tf < . If we
now attempt to invoke gl « doall with the ar-

gument Aob. ob « draw (), whose inferred type is
(Meth draw : 1 —t)—t, we get the additional constraint

(Meth draw : 1—t)—t < tY

which together with t] <t{ and the upper bound on t}
in C’ yields

(Meth draw : 1—t)—t

< (Inst dep : u’ Meth doall :t] —1, setDep : t),—1)—t}

The argument types of these function types must then
be in the reverse subtyping relation:

Inst dep : u’ Meth doall : t] —1, setDep : t)—1

< Meth draw : 1—t

But an object type without draw cannot be a subtype
of an object type with draw—this is an inconsistent con-
straint (by definition 2.1). This is fortunate because if
this were allowed it would produce a run-time error, as vl
is gl’s dependent and it will not understand draw. How-
ever, consider the line g2 « doall(Aob.ob «— draw ())
from the example: it is similar to the above but since
g2’s dependent is a GView, the lower bound in the final
constraint above will include draw, so no inconsistency
will be found. The single View class will thus be use-
ful in the case of both homogenous and heterogenous
dependents.

5 Discussion

The inference algorithm presented here adds a power-
ful degree of expressivity to typed object-oriented pro-
gramming. This paper has presented the basic ideas,
but leaves upen a number of problems. Type simplifi-
cation is a critical issue since the constraints may be in
a non-optimal form; some initial results were presented
but more work needs to be done. One of the most im-
portant related problems is developing a user interface
for presenting the program text and associated type in-
formation meaningfully to the programmer. Since the
types are of a different nature than standard types, sig-
nificantly different approaches will be needed when com-
pared to traditional language designs. One simple tool
that is needed is an editor that shows the possible sources
of a constraint inconsistency by e.g. highlighting the por-
tion(s) of code where the error may have arisen. This
tool puts the type system to its best advantage: much
more information about the program is encoded in the
types, so more precise descriptions of type errors may
be given. Two language features missing from I-Loop
that will be challenging to incorporate are modules and
a notion of friend functions as found in C++.

This type system also makes contributions to the issue
of typing object-oriented programs. The precision of the
types allows the “inheritance vs subtyping” decision to
be postponed, increasing flexibility. Bruce’s PolyTOIL

language [5] has stronger form of polymorphism that al-
lows many of the same notions to be expressed, but the
price is the programmer must come up with the com-
plicated PolyTOIL typings, a potentially daunting task.
Our system also allows some union and intersection types
to be expressed, a feature absent from PolyTOIL. Poly-
TOIL types on the other hand do not suffer from the
readability problem of I-LooP constrained types. An al-
ternate school of thought is to use multi-methods instead
of binary methods [8, 19]. The multi-method approach
has the advantage of avoiding the tradeoff between in-
heritance and subtyping. One advantage of our rich type
language is Ingalls’ solution [13] can be used to encode
multiple dispatch in our single-dispatch framework. A
fuller discussion of these topics is found in [4].

References

[1] M. Abadi and L. Cardelli. A semantics of object types. In
Proceedings of the Ninth Annual IEEE Symposium on Logic
n Computer Science, pages 332-341, 1994.

[2] A. Aiken and E. L. Wimmers. Type inclusion constraints and
type inference. In Proceedings of the International Confer-
ence on Functional Programming Languages and Computer
Architecture, pages 31-41, 1993.

[3] K. B. Bruce, J. Crabtree, T. P. Murtagh, R. van Gent, A. Di-
mock, and R. Muller. Safe and decidable type checking in an
object-oriented language. In OOPSLA ’93 Conference Pro-
ceedings, 1993.

[4] Kim Bruce, Luca Cardelli, Giuseppe Castagna, The Hop-
kins Objects Group, Gary T. Leavens, and Benjamin
On binary methods. Technical Report TR95-08,
Department of Computer Science, lowa State University,
Ames, lowa 50011-1040 USA. ftp://ftp.cs.iastate.edu/
pub/techreports/TR95-08/TR.ps.Z, 1995.

[5] Kim B. Bruce, Angela Schuett, and Robert van Gent. Poly-
TOIL: A type-safe polymorphic object-oriented language. In
ECOOP 95, 1995.

[6] P. Canning, W. Cook, W. Hill, J. Mitchell, and W. Olthoff. F-
bounded polymorphism for object-oriented programming. In
Proceedings of the Conference on Functional Programming
Languages and Computer Architecture, pages 273-280, 1989.

Pierce.

[7] L. Cardelli. A semantics of multiple inheritance. In Seman-
tics of Data Types, volume 173 of Lecture notes in Computer
Science, pages 51-67. Springer-Verlag, 1984.

[8] Giuseppe Castagna. Covariance and contravariance: conflict
without a cause. ACM Transactions on Programming Lan-
guages and Systems, 17(3), 1995.

[9] William R. Cook, Walter L. Hill, and Peter S. Canning. In-
heritance is not subtyping. In Conference Record of the Sev-
enteenth Annual ACM Symposium on Principles of Program-
ming Languages. ACM Press, 1990.

[10] Pavel Curtis. Constrained quantification in polymorphic type
analysis. Technical Report CSL-90-1, XEROX Palo Alto Re-

search Center, CSLPubs .parc@xerox.com, 1990.

[11] J. Eifrig, S. Smith, and V. Trifonov. Type inference for recur-
sively constrained types and its application to OOP. In Pro-
ceedings of the 1995 Mathematical Foundations of Program-
ming Semantics Conference, volume 1 of Electronic Notes in
Theoretical Computer Science. Elsevier, 1995.

[12] J. Eifrig, S. Smith, V. Trifonov, and A. Zwarico. Applica-
tion of OOP type theory: State, decidability, integration. In
OOPSLA 94, pages 16-30, 1994.

[13] Daniel H. H. Ingalls. A simple technique for handling multi-
ple polymorphism. In OOPSLA ’86 Conference Proceedings,
Portland, Oregon, September 1986, volume 21(11), pages
347-349, November 1986.

[14] S. Kaes. Type inference in the presence of overloading, sub-
typing and recursive types. In ACM Conference on Lisp and
Functional Programming, pages 193—-204, 1992.

[15] Samuel N. Kamin and Uday S. Reddy. Two semantic models
of object-oriented languages. In Carl A. Gunter and John C.
Mitchell, editors, Theoretical Aspects of Object-Oriented Pro-
gramming, chapter 13, pages 464-495. MIT Press, 1994.

[16] R. Milner. A theory of type polymorphism in programming.
Journal of Computer and System Sciences, 17:348-375,1978.

[17] R. Milner, M. Tofte, and R. Harper. The Definition of Stan-
dard ML. MIT Press, 1990.

[18] J. Mitchell. Coercion and type inference (summary). In Con-
ference Record of the Eleventh Annual ACM Symposium on
Principles of Programming Languages, 1984.

[19] W.B. Mugridge, J. G. Hosking, and J. Hamer. Multi-methods
in a statically-typed programming language. In Pierre Amer-
ica, editor, ECOOP ’91 Conference Proceedings, Geneva,
Switzerland, volume 512 of Lecture notes in Computer Sci-
ence. Springer-Verlag, 1991.

[20] N. Oxhgj, J. Palsberg, and M. I. Schwartzbach. Type infer-
ence with subtypes. In ECOOP’92 European Conference on
Object-Oriented Programming, volume 615 of Lecture motes
i Computer Science, pages 329-349. Springer-Verlag, 1992.

[21] J. Palsberg and M. Schwartzbach. Object-Oriented Type Sys-
tems. Wiley, 1994.

[22] Jens Palsberg and Michael I. Schwartzbach. Safety analysis
versus type inference for partial types. Information Process-
ing Letters, pages 175-180, 1992.

[23

J. Plevyak and A. Chien. Precise concrete type inference for
object-orientedlanguages. In Proceedings of the Ninth Annual
ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 324-340, 1994.

[24] J. C. Reynolds. Three approaches to type structure. In TAP-
SOFT proceedings, volume 185 of Lecture notes in Computer
Science, pages 97-138, 1985.

[25] T. Sekiguchi and A. Yonezawa. A complete type inference
system for subtyped recursive types. In Proc. Theoretical
Aspects of Computer Software, volume 789 of Lecture Notes
i Computer Science, pages 667—-686. Springer-Verlag, 1994.

[26] Jean-Pierre Talpin and Pierre Jouvelot. The type and effect
discipline. In Proceedings of the Seventh Annual IEEE Sym-
postum on Logic in Computer Science, pages 162-173. IEEE,
1992.

[27] M. Tofte. Type inference for polymorphic references. Infor-
mation and Computation, 89:1-34, 1990.

[28

Mitchell Wand. Complete type inference for simple objects.
In Proceedings of the Second Annual IEEE Symposium on
Logic in Computer Science, pages 37-44. IEEE, 1987.

A Simplification

To define formally the concept of reachability, we first
introduce the operators Tly; and 7T_; to extract the types

where
Ry(a) = Dy(a)
R,(Nat)=90
R,(Bool) =0
Ry(Inst ir) = D,(Inst ir)
Ry(Meth mr) = D,(Meth mr)
Dp(7) = Cpl(r) UU oy RolT3(0))

Reachable(A, 7, €)= Re1(r) U (U cootomn B-1(7)) U (Userrvioy, oecodomi (Bt (@) U R-a(w)),

Ry(ni—m)=

(Class st Inst ;3 Meth mg)
(Inst i3 Meth mp) =

Ry(Inst ;7))

(Meth myg . Tk)

R_p(1) U Ry(72)

—p(st) U Ry(Inst i Meth mp)
»(Inst z’/i‘) U Ry(Meth mg)
R+1 TJ JU R_1(7;))

R
R

U]
Uy &

k

Cuo(r)={c|ce CYC) and T_,(c) =7}

Figure 7: Reachability Definition

involved in a type constraint:

T+1(T1 S Tg) dIef 1, T_ (T1 < Tg) —e T

The set of constraints in C' reachable from A and 7 is
then defined in Figure 7. In this definition the subscript
p ranges over {—1, +1}. We say a type 7/ occurs in a
positive (resp. negative) position in (A, 7\ C) if com-
puting Reachable(A, 7, C) involves computing Ryq(7)
(resp. R_1(7")). Effectively we perform a garbage col-
lection on the closure of the set of constraints, taking
into accout that further applications of typing rules can
only (i) put upper bounds on the “root type” 7, hence
we trace it “downwards,” searching its current lower
bounds; (ii) put lower bounds on the type 7/ of a variable
introduced by rules (Abs) (by placing 7/ in the negative
position of the function’s type) or (Class); or (iii) put
upper or lower bounds on imperative type Varlables free
in the type scheme of a let-bound variable (by reading
its value or assigning to it, respectively). The result of
this garbage collection is a constraint system of a special
kind: each constraint in it specifies either an upper or a
lower bound on a type variable.

Further transformations of the rc type allowed by the
(Simp) include:

Replacing a variable by its bound: Define
SubLowert (7\ C) as follows: if ¢ occurs only posi-
tively in (4, 7 \ ('), and there is only one constraint
of the form 7 < ¢t in C, and t ¢ FTV(r'), then
SubLower (1 \ C) = (1 \ (C — {7 <t))[r'/t], i.e
the rc type with 7/ substituted everywhere for t;
otherwise SubLoweri(r\ C) =7\ C.

A similar simplification SubUppert (t\ C) can be
performed to replace negatively occurring variables
with their upper bounds.

Merging of variables: Define Mergefft,(r \ C) as fol-
lows: if {t < ¢, ¢ <t} C C and ¢’ is not free in
A, then Merge, /(T \C) = (r\ O)[t/t']; otherwise
Merge, o(r\ C) =7\ C

We omit for lack of space the descriptions of other trans-
formations that can simplify the types. The function

Stmplified is defined as the composition of Reachable,
SubLower, SubUpper, and Merge, applied for all free
variables in the rc type.

PrROOF SKETCH OF LEMMA 2.3: The transfor-
mation proceeds by bubbling all (Simp) uses from the
leaves to the root of the proof tree. To establish this, it
must be shown that (Simp) commutes with every other
I-Loop inference rule. Consider first the garbage collec-
tion simplification. By induction on the definition of the
Reachable set, we can show that (i) if the type variables
t and t' are free neither in A nor the Reachable set, and
t is free in the constraint system before applying (Simp),
then the proof below the application of (Simp) can be
a-converted to use ¢ instead of ¢'; (ii) if a constraint ¢,
in which 7 is in a positive position, is consistent with
C, then it is consistent with Reachable(A, 7, C'). By (i)
it follows that the union of constraint systems is con-
sistent, if the union of their garbage-collected versions
is (since we can add back the unreachable constraints
while renaming variables to avoid accidental reuse and
therefore possible inconsistencies). By (ii) we have that
the constraint systems before the garbage collection are
consistent with the new constraints added by some of
the rules (since all of these constraints have the “root
types” from their premises in positive positions). The
(Let) and (PVar) rules complicate the matter somewhat
as they can produce many copies of the garbage, and
can create many copies of “root types,” but these are
still all in positive positions. Regarding the other trans-
formations in Simplified, it suffices to notice that their
conditions for applicability are monotone in C' (provided
type variables not free in A are renamed to avoid reuse
in the new constraints), hence we can still apply them
after combining several constraint systems.

At this point, all applications of (Simp) have been
bubbled from the leaves to the root, so the proof has
only one instance of (Simp), at the root. The last step
of the proof transformation is to remove the only (Simp),
observing that the I-LOOP expressions in its premise and
conclusion are the same. a

