Type Inference for Recursively Constrained Types and its
Application to OOP

Jonathan Eifrig*! Scott Smith* Valery Trifonov*!
The Johns Hopkins University *
(DRAFT)

November 16, 1994

1 Introduction

This paper addresses the problem of designing an object-oriented programming language with an
effective type inference mechanism. Recently developed programming languages including Standard
ML and Haskell incorporate type inference as a core component of the language. However, type
inference has yet to achieve practical application to object-oriented programming languages.

We strongly feel the core type features necessary to model object-oriented programming with
type inference include a notion of subtyping [CW85], and a notion of “recursively constrained
polymorphism,” a generalization of F-bounded polymorphism [CHC90, CCHT89].

Recursively constrained types x are types of the form 7\ C', with “\ 7 reading “where.” C
is a set of type constraints of the form 7 < 75, possibly containing free type variables. These
constraints may be recursive in that a variable ¢ could occur free in both 74 and 7. The recursive
constraint set {t — Nat < ¢,¢ <t — Nat} expresses { =t — Nat, so recursively constrained types
subsume recursive types. We will use rc type to abbreviate recursively constrained type.

Polymorphic rc types are types Viq,...,t,.7 \ C where constraints 71 < 75 in €' may contain
type variables {y,...%, free. Polymorphic rc types generalize the more well-known bounded types
[CWS85] V& < 7.7’ in several ways. First, they are recursive, so ¢ could occur free in 7; this
is not allowed in bounded types. Types with ¢ occurring free in 7 are the so-called F-bounded
types [CCHT89]. Polymorphic rc types generalize F-bounded types by allowing more than one
upper bound on a type variable, as well as allowing multiple lower-bound constraints 7 < ¢. This
generalized form of polymorphic type is very useful in typing object-oriented programs that are
otherwise untypable, irrespective of the question of type inference. An example of such a program
is given in Section 5 below.

It is not difficult to see how rc polymorphism is useful in typing classes and objects, for it is
at least as useful as F-bounded polymorphism. Classes may have so-called binary methods that
refer to the type of objects of their own class; for instance an object with an equal method takes
as parameter another object of its own type. Thus, a self-type is needed. And, this self-type needs
to be open-ended since a class may be extended; we wish the type of self to be “an object with all

*Partially supported by NSF grants CCR-9109070 and CCR-9301340

Partially supported by AFOSR grant F49620-93-1-0169

YContact: Scott Smith, Department of Computer Science, The Johns Hopkins University, Baltimore, Maryland
21218. E-mail: scott@cs.jhu.edu. Fax: (410) 516-6134. Phone: (410) 516-5299

the methods currently defined, and possibly additional ones”. Polymorphic rc types capture this
notion by constraining the polymorphic “self-type” ¢ to include the current methods, for instance

V.7 \ {t <...equal : { — Bool,...}

Binary methods have proven very difficult to type in a general way; it has even been suggested that
they be disallowed.

One way to understand the usefulness of lower bounds 7 < { in rc types are as generalizations
of recursive types. It is possible to write an rc type k = ¢t \ {7y < ¢ < 75} where lower bound 7
differs from upper bound 73 (it is a recursive type if 74 = 72). These generalized forms are useful
as intermediate results produced during the type inference process as “partial” forms of recursive
types. During the type inference process, constraints are accumulated on types in a “bottom-
up” fashion, and so types at the leaves of typing proofs have small constraint sets, and have fat
constraint sets at the root. The lower bound 7 constrains the “output” of the type x (what
properties objects of type k must have); if an object of type k is used (i.e., passed to a function of
type 7/ — ...), an additional upper-bound constraint ¢ < 7' will be placed on the type by the type
inference mechanism, and this could only be contradictory if 7y < 7/, which follows by transitivity,
was contradictory. The upper bound is the dual of this, constraining the “input” of the type (what
functions of type ¢t — ... must do).

The presence of multiple upper-bound constraints or multiple lower-bound constraints can be
understood as a restricted form of union and intersection type: {r < t,7" <t} would be equivalent
to {7 vV 7/ < t} if there were union types 7V 7’ in the language; a dual relationship exists between
intersections and upper bounds. We believe general union and intersection types cause too many
problems to be worthwhile, but this implicit restricted form is quite natural.

In this paper we develop a type inference algorithm for the I-SooPp language (Inference Seman-
tics of OOP). I-Soop is not an object-oriented language; however, it has an expressive enough type
system so that typed OOP may be effectively encoded within I-Soopr. We take a translational
approach because we find the factoring to help clarify ambiguities; however, there is also merit in
studying languages where objects themselves are primitive [AC94], and the concepts herein should
eventually be recast as primitive object typings. I-SOOP’s type system contains both subtyping
and polymorphic rc types. We infer shallow polymorphic rc types at let-expressions as in the Hind-
ley /Milner algorithm [Mil78]. In addition the underlying language includes records and a notion
of state, for with these features it is possible to obtain an effective encoding of object-oriented
programming. Records are needed so record subtyping can be used to model object subtyping
[CW85]. Without state, the critical state-holding property of objects is lost [ESTZ94].

Our approach to establishing the soundness of constrained type inference differs from other work
in the literature. In other approaches (e.g. [AW93, Kae92, SY94, PS94]), a method is given that
either produces a satisfying assignment to the constraints and thus establishes their consistency, or
establishes that no such solution exists and the constraints are thus inconsistent. In our approach,
an rc type’s constraint system is considered “consistent” if it does not contain any “obvious” con-
tradictions such as Nat < Bool. We show this view is sound, without ever showing the “consistent”
constraint systems have solutions. Instead we directly establish a subject-reduction property over
a proof of typing with “consistent” rc types at each node [Tof90, WF91]. We believe the standard
method of finding solutions to the constraint sets can be overly restrictive, for it forces one to have
a rich enough type language or type model that can express the solutions as types or sets. In our
language, for instance, we expect general union and intersection types would be required to express
the solution of constraints as types, but we do not wish to pay the penalty of having these types
in our language.

We also take a more primitive approach to establishing the completeness of type inference,
i.e. that all typable programs will successfully have some type inferred by the type inference al-

gorithm. We first define a restricted set of typing rules, the inference rules, for which typing
derivations are deterministic. Then these rules are shown equivalent in strength to the general
form of rules, without recourse to a “principal types” property.

1.1 Related Work

A number of type inference systems have been developed that bear on the type inference problem for
OOP. Papers of Reynolds [Rey85], Cardelli [Car84], and Mitchell [Mit84] are foundational papers
in the field that develop the basic concepts of constraints and subtyping. Many papers have been
written since; we focus on the more recent work the most relevant to ours.

Kaes [Kae92] develops a type inference algorithm for a language containing polymorphic and
recursive types and type constraints. This work incorporates subtyping constraints, recursive types,
and polymorphism. Kaes writes so-called constrained types 7|C' in close analogy to our rc types
7\ C. This approach cannot solve general recursive constraints: ¢ < 7 generates a non-terminating
unification problem in his system if ¢ occurs free in 7, while our approach can handle such constraints
without difficulty. He does allow a “fixing” of such a constraint by replacing it with a recursive
type pt.7, but at the cost of an important loss of generality. Kaes takes the standard approach
to constraint consistency, by producing a solution to the constraints. He also intends < to model
overloading, not record subtyping (his system has no record types). Sekiguchi and Yonezawa [SY94]
take an approach similar to Kaes but interpret < as subtyping on record types, making it more
directly applicable to object-oriented programming.

Palsberg, Schwartzbach, et. al. have written a number of papers concerning type inference for
objects [PS94, OPS92, PS92, KPS92]. The main feature of their work is they do not take the
Hindley/Milner approach to type inference. Instead, their inference algorithm uses flow analysis to
generate a set of constraints about a program, and then applies another algorithm to come up with a
solution to these constraints if it exists. Their work represents the current state-of-the-art in having
a practical type inference algorithm for object-oriented programming languages. Other advantages
of their approach include asymptotically efficient inference algorithms, and named class types.
Their system however has no polymorphism, and they take a code-expansion view of inheritance,
requiring re-type-checking with each class extension. This lack of polymorphism has been partially
addressed by Plevyak and Chien [PC94].

Our work is closest to that of Aiken and Wimmers [AW93]. They develop a type system with
subtyping, union and intersection types, and a form of polymorphic type similar to polymorphic rc
types. They prove soundness using the ideal model [MPS86]. As with the previously mentioned re-
searchers, they have an algorithm that produces a satisfying assignment to the top-level constraints
to establish consistency of a constraint set. The satisfying assignment they produce is an ideal in
the ideal model. We have no union, intersection, or negation types. These types prove problematic
in their system, and they are in fact unnecessary for type inference — if they are not used in the
types of atomic constructs, they are not generated by the inference algorithm (provided multiple
upper and lower bounds to the same variable are allowed, as we do). Aiken and Wimmers have
not addressed the problem of using their system for typing object-oriented programs; their lan-
guage lacks important features necessary for the encoding of objects. In particular their language
is a functional language without records. The ideal model cannot model languages with state, so
their approach would not extend to a language with state. Aiken has implemented the type infer-
ence algorithm [Aik94], and this implemented system has an optimized inference algorithm and an
implementation of extensible records.

Encoding object-oriented features within a more basic language is one possible approach to
how object-oriented programming should be done [Rémy94]. We could take a similar approach
by programming in an object-oriented style via the encoding of objects in I-Soop that we give in
Section 5. Rémy gives a collection of extensions to ML that allow OOP to be encoded. Rémy is the

only author amongst of those previously discussed who has a proof of soundness of his system in
the presence of reference cells. His encoding is missing a notion of subtyping and thus lacks the core
feature of object lifting: allowing subclass objects to be implicitly coerced to be superclass objects.
Instead, coercion functions must be explicitly supplied. Rémy’s encoding is more efficient than the
encoding we use; each object creation in our encoding entails forming closures for each method
of the object. If our language were to be used as a primitive OOP language, some more efficient
object representations would need to be developed. Rémy’s system also has a notion of extensible
record, which we expect will be useful for encoding delegation-style object-oriented programming.

1.2 Outline

In Section 2 we present I-SOOP and its operational semantics. Section 3 presents the [-SOOP type
system. In Section 4 the proof of subject reduction and type inference are sketched; a more detailed
proof of subject reduction is found in Appendix A. Then, to show how OOP can be faithfully
encoded, an extended example is worked in Section 5. This example also serves to illustrate the
power of the type inference system. We draw some final conclusions in Section 6.

2 The I-SooP Language

We begin by defining the I-SooP language, which is roughly call-by-value PCF with records,
reference cells, and let-expressions.

Var >z
Numsnu=0]1]2] ...
Val svu=z|n|dz.e|{m=0v2
Exp deu=v|ee|letz=ecine|ifethencelsee | {m=e}|em
The “vector notation” m=wv is shorthand for my=wv1, ..., my=v; for some k; m; =v; is short-

hand for the same and indicates ¢ will range over the elements of the vector. The set B =
{true, false, pred, succ, is_zero, ref, |, set} C Var contains the built-in boolean constants as well
as the primitive functions on numbers and reference cells.

A store (ranged over by s) is a finite mapping from variables to values. A configuration (s, €) is
a pair of a store and an expression. Computation is defined via a single-step relation —; between
configurations. A reductlion context R is an expression with a “hole” o in it, into which one may
put a subexpression via R[e]. Reduction contexts serve to isolate the next step of computation to
be performed—it is always in the hole.

DEFINITION 2.1 A reduction context is defined as

Ru=o|Re|vR|letz=Rine|if R then e else e

| {my=v1, ...,mi—y =01, m;=R,mijp1=€i41, ..., mp=€r } | R.m

DEFINITION 2.2 +7 is the least relation on configurations such that

(s, RJ[if true then ey else e3]) —1 (s, R[e1])
(s, RJif false then e else e3]) —1 (s, Rlez])
(s, Rllet z=v in e])—1 (s, Rle[v/z]])
(s, RI(Aa.€) v]) 1 (s, Rle[o/z])
(s, R[iszero 0]) —1 (s, R[true])
(s, R[iszero n]) —1 (s, R]false]) (if n # 0)
(s, R[succ n]) —1 (s, R[n']) (ifn' =n+1)
(s, R[pred n]) —1 (s, R[n']) (ifn =n—=1)
(s, R[{ ...,m=wv, ... }.m]) —1 (s, R[v])
s, R[ref v]) —1 (s||[z — v], R[a]) (z ¢ dom(s)U B)
(s, R[lz]) —1 (s, R[s(z)] (z € dom(s))
(s, R[set {cell=z,val=v}]) —q (s||[z — v], R[v]) (= € dom(s))

where

e[e’/x] is the capture-free substitution of €’ for z in e,
[z +— v]is the map defined only on z with result v,
f|lg is the functional extension of f by g.

Here is a sample execution.

(0, (Ax.succ (!(xfield))) {field =ref 53) —1 ([y — 5], (Ax.succ (!(x.field))) {field=y})
([y — 5], succ (!({field =y }.field))) —1 ([y — 5], succ (ly)) —1 ([y — 5], succ 5) —1 ([y— 5], 6)

LEMMA 2.3

(i) +1 is deterministic: if (s,) —1 (s, €’) and (s, €) 1 (s”, €”), then there is a uniform renam-
ing of variables in s’ and €’ to those in s” and e” respectively.

(ii) ~1 is compositional: if (s, e}y (s, €'), then (s, R[e])—1 (s', R[€']) for every reduction
context R.

3 I-Soop Types
The monomorphic types of the language are

TyVar > au=1|u
Typ 37 u=a| Nat|Bool | 7—7' | {m:72} | 7 ref

where { ranges over the applicative type variables AppTy Var « {t1, tp, ...}, and u ranges over the
imperative ones: ImpTyVar & {u1, up, ...}. This division of variables into two classes is similar
to that of Standard ML. The set of free type variables in a type 7 is FTV(7); T is imperative if
FTV(r) C ImpTyVar.

A type constraint is a subtyping assertion between two (monomorphic) types, written 7 < 5.
We will require all sets of constraints used in types and rules to be implicitly closed under obvious
laws.

DEFINITION 3.1 (CONSTRAINT SYSTEM) A set of type constraints C' is closed iff

(i) fnm<meCandp,<m3€C,thenm <7m3€C.
(ii) fm—7r <mp—1, € C,then {7y <71y, 7 <75} CC.
(iil) If {m; 7} < {m; 7/} € C and {m;} D {m;}, then {r; <71} C C.
(iv) If 7y ref <y ref € C, then {ry <7y, <7} CC.

A closed set of constraints is a constraint system.

We let C' range over (implicitly closed) constraint systems, and thus will be careful to make
sure any new set of constraints we form is closed. The closed union of sets of constraints is denoted
by C1wWCy, an operation that by inspection can be seen to be associative.

DEFINITION 3.2 (CONSTRAINT CONSISTENCY) A constraint 7 < 7y is consistent if
(i) 7 € TyVar or 75 € TyVar;

(ii) m = (7)) and 7 = ct(p), where ¢; is a type constructor other than a record; or

(i) m={m:7}r, o ={m': 7'} and {m} 2 {m'}.

Otherwise a constraint is inconsistent.

For example, Nat < t—Nat and t ref < {m:Bool} are inconsistent constraints, while t <
t'—Bool, t < u, and u < Bool are each consistent. A constraint system is consistent if all the
constraints in the system are consistent. The rules will require all constraint systems to implicitly
be consistent.

The type system assigns I-SOOP expressions rc types of the form

ku=T1\C

to indicate an expression of type 7 which is constrained by the constraints in C'. Since the rules
implicitly require C' to be consistent, it makes sense to view k as a type and to write C' on the right
side of the turnstile as part of the type.

We define the following notion of subtyping on rc types.

DEFINITION 3.3 (SUBTYPING RC TyYPES) 7\ C' < 7'\ C' provided that C'is consistent and either
Cu{r<7'}CC'yorT=71"and C CC".

Stronger notions of subtyping could be defined, but for our purposes this definition suffices. The
type schemes ¢ are as follows.
ou=1T|Va.k

Note that since kK = 7\ C' can contain an arbitrary collection of constraints C', shallow F-bounded
polymorphic types are a special case of these polymorphic rc types.

3.1 [-Soop Typing Rules

Before giving the rules we describe notation used in the rules. Notation used in sequent judgements
includes the following. A type environment A is a mapping from variables to type schemes; we use
the more intuitive notation [z : o] instead of [z — o]. Given a type environment A, the proof
system assigns to an expression e a rc type 7 \ C, written as the type judgement At e : 7\ C,
under the condition that C'is consistent (as mentioned previously, all constraint sets C' appearing in
the rules implicitly must be consistent); we occasionally may write A e; : 71 \ C1, e2 : 72\ Co, ...
to indicate several type judgements provable in the same environment. Programs are type-checked
in the initial environment Ay assigning the following type schemes to the built-ins:

Agp = [true : Bool, false : Bool, pred : Nat—Nat, succ : Nat—Nat, is_zero : Nat—Bool,
ref : Yu. u—u ref, 1:Vt. t ref—t, set : Vt. {cell : t ref,val : t }—t]

o A
p ATBIING @G (g Alzlre 2
(PVar) A(z) = Va. &, fl_isxa:sg‘t:titution on {a} (Van) Aﬁ(:):TT\ ;
(Record) ;4;}@2; :{T;né;cri}\@i c (Sel) A;f—e;m:i(\,“c
(Cond) AAl_l—eﬁc clet?l:L\eQC&e’ls?e;T: \7'6\12’016;0;—@\623 (Num) m

AFe:7\C, All[z :Va.7\C]kFe : 7\ C' & isarenaming of {a}
AFlet z=eine : 7\ dCWC’
_ if e is expansive then AppClos(t \ C, A)
where {a} € {else Clos(T\ C, A)

(Let)

Figure 1: Typing rules of I-Soop.

A substitution on {a} is a map ¥ € TyVar — Typ which is the identity on TyVar \ {@} and maps
ImpTyVar to imperative types; a renaming ® of {a} is a substitution on {a} with codom(®) C
TyVar. An expression is expansive if and only if it is not a value; following Tofte [Tof90] we form
type schemes by making the sets of type variables we generalize over dependent on the expansiveness
of the expression. The definitions of these sets are

Clos(t\ C, A) = (FTV(r)UFTV(C))\ FTV(A)
AppClos(T \ C, A) Clos(t \ C, A)n AppTyVar

where the functionality of F'T'V is extended as usual to constraint systems, rc types, type schemes,
and type environments.

The typing rules for I-Soop are given in Figure 1. Most of the rules have obvious relation to
those of standard systems with subtyping and records; as in Tofte’s system [Tof90], the typing of
ref introduces imperative types. The main difference is the addition of constraints as part of types,
the associated subsumption rule on these types, and the way consistent constraints accumulate
from the leaves to the root of a typing proof. It is important to observe that consistency of
constraints is implicitly enforced by each rule. Other presentations of constrained type systems
[Mit84, AW93, Kae92] do not require local consistency, so the constraints in the rules have both a
hypothetical and assertional component. They are hypothetical in that they may be inconsistent,
and they are assertional in that they assert properties of the type if they are consistent. For this
reason they write C' on the left of the turnstile, and perform some top-level consistency check
before a proved typing is “true.” Since constraints are never inconsistent in our rules we have no
hypothetical component and constraints are thus written on the right-hand side of the turnstile.

Some justification is required for the (Let) rule, in which the constraint system of the let expression
contains not only the constraints in C’, necessary for typing its body, but also those in C', accumu-
lated for the type of the bound variable. Leaving the latter constraints out (as [AW93] do) results
in a system unsound with respect to the standard call-by-value semantics of the let expression; C'
may contain constraints on type variables free in the environment, and their omission may lead to
accepting programs which get stuck while evaluating the expression assigned to the bound variable.
As an example, consider the expression

(Ax.let y=Ixin succ x) 5

By rules (PVar), (Var), (Sub), and (App) the constraint system C of the rc type of Ix contains
7 < 7' ref for some type 7/, where 7 is the type associated with x by the rule (Abs). This constraint
will lead to inconsistency when combined with the constraint Nat < 7 at the outermost rule of the
typing proof, (App). If it were omitted from the constraint system of the let, the other constraint
on 7, namely 7 < Nat from the body succ x, would not cause an inconsistency, and the program
would type-check; however its execution obviously leads to the stuck state (), let y =15 in succ 5).

While the type language does not have recursive types, Ax.x x can be given the rc type
tj—ty \ {t1 < tj—ty}. We do not have a “bottom” type, but its positive occurrences may be
simulated by an unconstrained type variable, e.g. (Ax.x x) Ax.x x has the rc type

to \ {tj =ty <tg, t] <tj—to)

An unconstrained variable can also be used instead of a “top” type in negative positions. Positive
occurrences of “top” may be simulated by overconstraining from below:

Ag b if true then true else 5 : t \ {Nat <t, Bool < t}

This constraint system is consistent. Note that not all typable programs are of this particular “top”
type, but they are provably of type ¢ \ {Nat < ¢, Bool < ¢} for some C' and fresh ¢ by a single
use of (Sub). Similarly overconstraining from above achieves the effect of “bottom” in negative
positions.

4 Subject Reduction, Soundness, and Type Inference

We prove soundness of the type system by demonstrating a subject reduction property. First extend
the notion of typing to configurations:

DeriNiTION 4.1 AF (s,€) : 7\ C if and only if
1. AFe: 71\ C;
2. dom(A) = dom(Ag) U dom(s), dom(Ag) N dom(s) = 0, and Algem(4,) = Ao;
3. for each = € dom(s) we have A(z) = 7, ref and AF s(z) : 7, \ C; for some 7, and C; C C.

THEOREM 4.2 (SuBJECT REDUCTION) If AF (s, €) : K, then either e € Val orelse (s, €) 1 (s, €’)
and there exists an environment A’ such that A’ (s', €') : k.

The full proof of subject reduction appears in Appendix A; here we provide an overview. The proof
proceeds in the standard fashion: given a configuration and a proof of its typability, perform one
step of computation and transform the original typing proof into a proof for the new configuration.
The interaction between let-polymorphism and reference cells is known to cause significant difficulty
[Tof90]; our approach to this problem derives from [WF91], avoiding Tofte’s complex greatest fixed-
point construction.

The differences between our proof and that of [WF91] result from the constraint systems of
rc types and polymorphic rc types. Each step of computation is accompanied by a proof trans-
formation that pushes constraints present near the top of the proof tree towards the leaves. The
complications of the proof arise when these constraints are pushed through uses of the (Let) rule;
demonstrating that the type generalizations performed in the initial application of the rule remain
valid is non-trivial.

This pushing of constraints from the root of the typing proof towards the leaves during reduction
can be considered a lazy approach to proof canonicalization. An alternative approach would be to

Abigrer i \Ci, e2:m\ Oy All[z : t]Finre: 7\ C

(Aee) Abins e1 €2 1t \ C1UCW{r < mp—t} (Abs) Abps Az e i t—17\ C
A(z) =Va.k, @ isarenaming of {a} Alx) =71
(PVar) Ao 2% (Var) AFmz 7\ 0
Abinr e i1\ Gy Abpre:7\C
(Record) Abpt {mi=e Y {min P\ Y, G (Sel) Abigrem:t\ Cy{r <{m:t}}
. . / . . . 7. / !
(Let) Abinre:7\C, All[z :Va. 7\ Clripr e : 7"\ C (Num)

Abiprlet z=eine’ : 7'\ CuC’ Atbinrn:Nat\ 0
if e is expansive then AppClos(t \ C, A)

where {a} = {e]se ClOS(T \ C: A)

Al‘inf €1 ZTl\Cl, €9 ZTQ\CQ, 6327'3\03
A bing if €1 then eg else ez : ¢\ C1WCWC3W{r < Bool, 7 <t, 3 <t}

(Cond)

Figure 2: Type inference rules of I-Soopr.

regularize the initial typing proof of a program to canonical form by pushing all of the constraints
present at the root to the leaves before performing any computation. This would result in a more
straightforward subject reduction proof, at the expense of a more complicated proof canonicalization
lemma.

The soundness of the type system is a corollary of the Subject Reduction theorem:

THEOREM 4.3 (SOUNDNESS) If Ag b e : k, then either e diverges, or e computes to a value.

Proor: By induction on the length of computation, using Theorem 4.2. a
Note we have thus proved soundness of the constrained type system without ever having shown
the systems of constraints have a solution.

4.1 Type Inference

We now define the type inference algorithm and prove it is complete, i.e. if a program has a type
derivation the inference algorithm will infer a type for it. The strategy we take to reach this desired
outcome is the following.

1. Define a new set of rules (the inference rules) for which typing derivations are deterministic.

2. Prove the inference rules are equivalent in strength to the general rules we had been using
previously.

The inference rules appear in Figure 2.

THEOREM 4.4 For all terms e and environments A, it is decidable whether there exists a x such
that A Fipp e @ k.

PROOF SKETCH: By inspection of the rules, there is only one rule for typing each expression
construct. By further inspection, the only nondeterminism that may be introduced in rule appli-
cation is the choice of type variables used in rules (Abs) and (PVar). We thus choose canonical
proofs that use fresh variables in every place possible. If a proof exists, there clearly must then be a
corresponding canonical proof. For expression e the canonical proof is unique modulo a-conversion.
Thus a decision procedure may be defined for constructing such a canonical proof. The algorithm
fails when an inconsistent constraint system is obtained when combining the constraint systems
inferred for subterms, and detection of such inconsistencies is trivially decidable. O
We now relate the inference rules to the general rules.

THEOREM 4.5 (COMPLETENESS OF TYPE INFERENCE) Given an environment A and an expres-
sion e, the typing judgement A b e : & is provable for some & if and only if A ¢ e : k' is provable
for some '.

PROOF SKETCH: If A Fjur e : &' is provable, A - e : k is obviously provable as well; each
inference rule is a special case of a combination of (Sub) and a general rule.

Conversely, a proof of A - e : & can be transformed into a proof of A ki, e : £’ in several stages.
First, each assumption @ : 7 extending A by rule (Abs) is replaced with the assumption z : ¢ for
some fresh ¢, and the constraint {¢{ = 7} (shorthand for {t < 7, 7 <{}) is added to the constraint
system of each judgement. A use of the (Sub) rule is then used after each (Var) rule for z to lift
z :ttox:7;an application of (Sub) also follows (Abs) to reduce the domain ¢ of the A-abstraction
back to 7. A similar transformation is then used to convert each substitution ¥ in the (PVar) rule
into a renaming, replacing each type 7 in the codomain of ¥ with fresh type variable { and adding
the constraint {t = 7} as above. Finally, the proof is inductively transformed from the leaves to
the root, replacing each general rule with its inference form. Uses of rule (Sub) are combined into
the implicit subsumption present in each inference-style rule, whilst removing garbage constraints.
O

Thus from Theorems 4.5 and 4.4 we may conclude that every program typable under the general
rules has a type inferred by the type inference algorithm. Note we establish no principal typing
property. The typing produced by the inference algorithm is indeed “minimal” in an intuitive sense,
but it is not formally minimal since our definition of x < s’ is weak: t—Nat \ {¢ < Nat} is not
a subtype of Nat—Nat \ (), even though any term that can be given the former type can also be
given the latter. We leave the question of principal typings for future study, since completeness is
ultimately all the programmer desires.

5 Applications to OOP

We now illustrate how this type inference algorithm is useful for typing object-oriented programs,
the main motivation for our work. We show its utility in class-based OOP; we expect it also
applies to delegation-style OOP but that topic is beyond the scope of this paper. The basic OOP
concepts we wish to incorporate include standard notions of object, method, instance variable,
class, inheritance, method/instance hiding, and object lifting!. The more advanced notions we
wish to account for include polymorphism, multiple inheritance and binary methods. Without
binary methods (in general, methods that take objects as parameters or return objects as values),
the object typing problem is not overly difficult: objects may be interpreted as records of functions
(methods) and cells (instance variables), inheritance is subtyping, and object lifting is accomplished
by a subsumption rule. As we show, typing becomes considerably more difficult in the presence of
binary methods [CHC90].

The ideal way to show applicability to OOP would be to define a complete OOP language,
types, and inference algorithm; this is beyond the scope of this paper, however. Instead, we will
show how a collection of simple macros allow OOP to be embedded into I-Soop.

The basic idea of the representation is to interpret classes as functions on records As.{ ...}
where s is the “self”; new then takes the fixed point of a class to produce an object, in the form of
a record (see [KR94]). We cannot quite use this encoding. First, it is difficult to take fixed points
of records in a call-by-value language. Second, when taking a fixed point via a Y-combinator,
the semantics entails re-evaluating the record with each recursive access, and thus erroneously re-
initialize any instance variables. In previous work [ESTZ95] we avoided these problems by using a
memory-based fixed point. Unfortunately this encoding will not work here as the use of reference

! Also called implicit object coercion or object subsumption.

10

cells to form the fixed point will infer imperative polymorphic types for objects. We thus opt for
an encoding using a Y-combinator with an initial instance variable allocation phase. In a more
complete treatment of this topic a limited form of memory-based fixed point such as the single-
assignment reference (SAR) of [ESTZ93] could be used. We ignore the issue of information hiding
in this presentation, though it is not difficult to incorporate.

DEFINITION 5.1 The object syntax is defined by the following macros.

(class) class s super u; of e; inst x; =€’ meth my, =e}

MY let uf=¢; {}inlet ui=u) (Az.Q) inlet y={z;=ref ¢’} in
As.let u;=u? (s)in AL} {inst=y, meth={my=¢}
new) new = Ax.Y(x{3})
message send) e<-m (e {}).meth.m
instance read) ex ((e {}).inst.z)
instance write) e;-z :=e; = set {cell=(e; {}).inst.z,val=e3}

(
(
(
(

where Y = Ay, (Ax.x x) Ax. Az.y (x x) z is a call-by-value Y-combinator, Q@ =Y (Ax.x), and A{}.e
abbreviates Az.e for fresh z.

Note that the class macro binds occurrences of s free in the e}, and those of u; free in e; and e}.

We illustrate the typing problems involved with binary methods through an example of a Ged-
Num class that has a binary method ged that takes another GedNum and recursively computes the
GCD of itself and the other GedNum. In order to keep the example very simple we assume the
instance variable containing the actual number, val, is publicly accessible, and that GedNum defines
no other methods. ZGedNum is a subclass of GedNum with an additional unimportant method zero.
Here mod is taken to be a function that computes the modulus of two numbers.

let GedNum = class s super
inst
val=0
meth
ged = Anum. if is_zero (s-val) then s
else if is_zero (mod (num-val) (s-val)) then s
else s-val :=mod (s-val) (num-val); num<-gcd s

The method ged takes another GedNum object, num, as argument. Because num is of the same
type as the type of objects of the class we are currently defining, expressing the type of the ged
method will require some self-referentiality.

We first consider appropriate types for the inheritance-is-subtyping paradigm. This is known to
have serious limitations [CHC90], but is nonetheless frequently found in commercial OOP languages.
In this paradigm we give GedNum the type

GedNum : GedType— GedType, where GedType = pt. ({ }—{ val : Nat ref, ged : t—t })

Note that p is the usual recursive type constructor. We use it instead of the I-SooP encoding of
recursive types using recursive constraints. new GedNum then returns an object of type GedType.
Without inheritance this type is perfectly adequate. We now look at the adequacy of this type
with inheritance. We extend our example by defining ZGedNum, a subclass of GedNum that also
includes a method that tests for zero.

11

let ZGcdNum =class s

super
u of GedNum

inst
val =u-val

meth
ged =u <-gcd,
zero= \{ }.is_zero (s-val)

In this case we did not override the ged method; instead, we inherited it from GedNum, denoted
here by the superclass variable u (in this encoding we explicitly state the superclass of each inher-
ited method). Using the inheritance-is-subtyping paradigm, the inherited instance variables and
methods must have the same types as in the superclass since these types are fixed. Thus, the type

of ZGedNum must be

ZGedNum : ZGedType—ZGedType,
where ZGedType = pt. ({ }—{val : Nat ref, gcd : GedType— GedType, zero : { }—Bool })

Note the ged method still operates on GedType, not ZGedType. Thus if ged were overridden in
ZGedNum with a function that used num’s zero method, this typing would fail, an undesirable fact.
Another problem with this typing is illustrated in the following additional code.

let zgnum =new ZGcdNum in (zgnum <- gcd zgnum) <- zero { }

The ged method type is not parametric in the type of the object given to it. Thus it will accept
an object of ZGedType as an argument since by subtyping ZGedType < GedType, but the result
returned is only of GedType, and thus is not known to have a zero method. The above code will
thus not type-check, even though it executes without error.

An alternative typing is needed. Since we inherit from GedNum, the ZGedNum objects that
eventually are created will have more methods than just gcd. To capture this, we must take a
parametric or open-ended view of the self-type in GedNum’s type. The parametricity we desire
in GedNum is that t should be any subclass with at least ged and val, and furthermore that ged
parametrically maps t to t. To express the open-ended view as a type, F-bounded quantification is
used as follows.

GedNum : Vit < GedTypeF(t). t—GedTypeF(t),
where GedTypeF(t) = {}—{val : Nat ref, ged : t—t}

ZGedNum may then be typed as

ZGcdNum : Vit < ZGedTypeF(t). t—ZGedTypeF(t),
where ZGedTypeF(t) = {}—{ val : Nat ref, gcd : t—t, zero : { }—Bool },

giving zgnum the type pt. ZGedTypeF(t). Thus the above code type-checks. In addition, it would
have been possible to override ged in ZGedNum, impossible in the simple recursive-types view.

The F-bounded typing has a drawback, however. ZGedNum objects can no longer be lifted to
be GedNum objects (since their types are recursive types with t occurring negatively), and thus the
following code will not type-check.

let gnum=new GcdNum in
let zgnum =new ZGcdNum in
ghum <- gcd zgnum

12

Note that the recursive typing would allow this code to type-check.

So, both the F-bounded interpretation of inheritance and the recursive types interpretation fail
to typecheck certain typable programs. Our type inference algorithm, however, infers types that
will allow both of the above varieties of message send to be typed in a single program.

5.1 Types inferred in [-Soop

To simplify the presentation, we will ignore the instance variable val in the example. We will also
simplify the translation scheme to reflect this, by eliminating the first line from the macro expansion
of class and replacing u? by e, and defining new as Y.

First consider the types inferred for the classes GedNum and ZGedNum. The simplified transla-
tions are

let GedNum =
As. A{}. {gcd = Anum. if — then s
else if — then s
else (num {1}).ged s }
in let ZGedNum =
As. let u=GcdNum (s) in
A Y. {ged=(u{}).ged,

zero=A{ }.is_zero — }

We first sketch how the inference system of rules, Fi,f, infers GedNum’s type. These rules are
deterministic modulo a-variants so proof construction is mechanical. Starting from the leaves and
using rules (Record), (App), and (Sel) in turn we obtain

Aol|[s:ty, £} :ta, num:ty] Fins (num {3).ged 1 tg \ {tp < {F—tc, te < {ged:ty}}
Next, using (App),

Agl|[s:ty, {}:ta, num:ty] Fine (num {3}).ged s : te \ C1,

where Cy = {tp, < {}—tc, tc <{ged :ty}, tg <t;—te}
Next, using (Cond) twice and (Abs),

Agl|[s:ty, €} ta] Fins Anum. ... tp—to \ Ciw{te <tp, t] <tp}
Finally, by (Record) and (Abs) twice,

Ag Finf GedNum : t—ta—{ged : tp—ty } \ Crw{te <tp, t] <t}

This is the type inferred by the inference rule system. An actual implemented type inference
algorithm would automatically perform a number of simplifications on this type that do not change
the meaning. Here we present these simplifications informally by giving typings deduced in the
general rules that are simplified forms of the inferred types. For GedNum, t; is unconstrained so it
may be replaced by {} by subsumption. t, has only one positive occurrence in the type, so it may
be replaced with its upper bound. tc, ty and te may also each be replaced. The following type
may then be deduced for GedNum in the general rules:

GedNum = Viq,ty. t1—={}—{ged : ({}—={ged : t; =ty })—to 3} \ {t] <t}

13

Hereafter we present the simplified forms of types only. An actual implemented type inference
algorithm would automatically perform these simplifications. For ZGecdNum, the (simplified)
inferred type is

ZGcdNum : Vi, ty. t1—{}—{ged : ({}—{ged : t; =ty })—ty,zero : {}—Bool } \ {t] <ty}

Contrast these types with the F-bounded type given GedNum in the “open-self” encoding above.
Observe that the parameter num is an object with a ged method. Since that is the only method of
num that is used, no more fields are required in the inferred type. Contrast that with the F-bounded
case where num has all methods of GedNum: the open-endedness here is more precise, each method
that is passed the “self” requires that self to only have the methods actually used. Note also that
this is not even an F-bounded type, the constraint t; < ty is not recursive. Recursive constraints
may not arise in classes, since the knot has not been tied yet.

Consider now the object types. gnum and zgnum have the following (simplified) types inferred:

gnum : Vig,to. t1 \ {{}—={ged: ({F—={ged :t1—=tp})—=trF <t] <y},
zgnum : Viq,to. t1 \ {{}—{ged: ({}—{ged : t; =ty })—ty,zero: { }—Bool } < t; <ty}

It is difficult to explain precisely what these types denote, except to say they are definitely not the
recursive types used in both encodings for objects above.
The message sends from the example have the following constrained types.

zgnum <-ged gnum : ty \ {
{}—{ged: ({I—{ged:t1,—ty })—ty, zero: {}—Bool} <t1, < {}—{ged:t;,—ty},
{r—{ged: ({I—={ged:typ—tr })—tp } <ty <{}—{ged:t1,—t 2,
tia <t typ <o},

zgnum <- ged zgnum : t5 \ {
{}—{ged: ({}—{ged: t],—t) })—t), zero : {3 —Bool} < t7, < {F—{ged: 1], =151},
{¥—{ged: ({}—{ged : t],—t5 })—t5, zero : {}—Bool } <t < {r—{ged:t],—t5},

t, < 1t <th)

Note the function upper bounds of t1,, typ, t], and t’1b can be proved to never be used; a more
complete set of simplification transformations would justify their removal. Each use of gnum and
zgnum gives rise to fresh variables by the (PVar) rule; if these objects were not let-polymorphic, the
two message sends above would share type variables and generality would be lost. Observe there
are no contradictions in the constraint systems of either of these message sends. Also note the result
type to is in effect the union of t1, and tq}, since it is an upper bound of these two types. This
corresponds to the fact that the result of ged could be either a gnum or a zgnum. Consider sending
a zero message to the result of the second message send, (zgnum <-gcd zgnum)<-zero {}. The
rules force t’2 < {}—{zero: {}—Bool} to be added to the constraints, but this is still consistent.
On the other hand, consider (zgnum <-gcd gnum) <-zero {}. This may give a run-time error, so
should not type-check. Indeed, t9 < {}—{zero: {}—Bool} by transitive closure also requires a
record without zero to be a subtype of a record with zero, but this is by definition an inconsistent
constraint.

Compared to other work on rigorously sound class-based object languages, neither Bruce’s
TOOPLE or TOIL languages [Bru93, BvG93], nor our LooP language [ESTZ95] allows the above
program to type-check; in fact we know of no static type-system for object-oriented programming

14

that successfully type-checks this example. So, not only do we obtain object type inference, we
have a richer type language where it is not required to choose between “inheritance is subtyping”
and the open-ended view of self.

6 Discussion

We have given a new, powerful method for type inference for object-oriented languages that is in
many ways more powerful than previously existing methods. We have hopes that the core we present
here will lead to development of a full-scale object-oriented programming language incorporating
type inference. What we present here only shows this method is feasible, however. Further study
is necessary to see if it can be implemented efficiently in practice. There also is the question of how
well other language features will combine with this inference method. Modules in particular will be
a challenge. There also should be separate syntax and types added for OOP features such as class
definition and message send. This will provide a uniform notion of what OOP is to all programmers,
and limit incompatibility of code. Lastly, even though this system is significantly stronger than the
existing Hindley/Milner-style inference algorithms, the types it produces are larger and less easily
readable by programmers. Thus it is important to address both the problem of simplification of
these types, and the problem of how a better descriptions of what led to a type error can be given
to programmers.

Acknowledgements

We would like to acknowledge Jens Palsberg for helpful discussions on related work, and Amy
Zwarico for contributions in the early phases of this project.

References

[ACY4] M. Abadi and L. Cardelli. A semantics of object types. In Proceedings of the Ninth Annual IEEFE
Symposium on Logic in Computer Science, pages 332-341, 1994.

[Aik94] A. Aiken. Illyria system. ftp://s2k-ftp.cs.berkeley.edu/pub/personal/aiken/, 1994.

[AW93] A. Aiken and E. L. Wimmers. Type inclusion constraints and type inference. In Proceedings of the
International Conference on Functional Programming Languages and Computer Architecture, pages 31—
41, 1993.

[Bru93] K. Bruce. Safe type checking in a statically-typed object-oriented programming language. In Conference
Record of the Twentieth Annual ACM Symposium on Principles of Programming Languages, pages 285—
298, 1993.

[BvG93] Kim B. Bruce and Robert van Gent. TOIL: A new type-safe object-oriented imperative language. Technical
report, Williams College, 1993.

[Car84] L. Cardelli. A semantics of multiple inheritance. In Semantics of Data Types, volume 173 of Lecture notes
in Computer Science, pages 51-67. Springer-Verlag, 1984.

[CCH*89] P. Canning, W. Cook, W. Hill, J. Mitchell, and W. Olthoff. F-bounded polymorphism for object-oriented
programming. In Proceedings of the Conference on Functional Programming Languages and Computer
Architecture, pages 273-280, 1989.

[CHC90] William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance is not subtyping. In Conference Record
of the Seventeenth Annual ACM Symposium on Principles of Programming Languages. ACM Press, 1990.

[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction and polymorphism. Computing
Surveys, 17(4):471-522, December 1985.

[ESTZ93] J. Eifrig, S. Smith, V. Trifonov, and A. Zwarico. A simple interpretation of OOP in a language with state.
Technical Report YALEU/DCS/RR-968, Yale University, 1993.

[ESTZ94] J. Eifrig, S. Smith, V. Trifonov, and A. Zwarico. Application of OOP type theory: State, decidability,
integration. In Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and
Applications, 1994.

15

[ESTZ95]
[Kae92]
[KPS92]

[KR94]

[Mil78]
[Mit84]
[MPS86]

[OPS92]

[PC94]

[PS92]
[PS94]
[Rémy94]
[Rey85]
[SY94]

[Tof90]
[WF91]

J. Eifrig, S. Smith, V. Trifonov, and A. Zwarico. An interpretation of typed OOP in a language with
state. Lisp and Symbolic Computation, 1995. To appear.

S. Kaes. Type inference in the presence of overloading, subtyping and recursive types. In ACM Conference
on Lisp and Functional Programming, pages 193-204, 1992.

D. Kozen, J. Palsberg, and M. I. Schwartzbach. Efficient inference of partial types. In Foundations of
Computer Science, 1992.

Samuel N. Kamin and Uday S. Reddy. Two semantic models of object-oriented languages. In Carl A.
Gunter and John C. Mitchell, editors, Theoretical Aspects of Object-Oriented Programming, chapter 13,
pages 464-495. MIT Press, 1994.

R. Milner. A theory of type polymorphism in programming. Journal of Computer and System Sciences,
17:348-375, 1978.

J. Mitchell. Coercion and type inference (summary). In Conference Record of the Eleventh Annual ACM
Symposium on Principles of Programming Languages, 1984.

D. B. MacQueen, G. Plotkin, and R. Sethi. An ideal model for recursive polymorphic types. Information
and Control, 71:95-130, 1986.

N. Oxhgj, J. Palsberg, and M. 1. Schwartzbach. Type inference with subtypes. In ECOOP’92 European
Conference on Object-Oriented Programming, volume 615 of Lecture notes in Computer Science, pages
329-349. Springer-Verlag, 1992.

J. Plevyak and A. Chien. Precise concrete type inference for object-oriented languages. In Proceed-
ings of the Ninth Annual ACM Conference on Object-Oriented Programming Systems, Languages, and
Applications, pages 324-340, 1994.

Jens Palsberg and Michael 1. Schwartzbach. Safety analysis versus type inference for partial types. Infor-
mation Processing Letters, pages 175-180, 1992.

J. Palsberg and M. Schwartzbach. Object-Oriented Type Systems. Wiley, 1994.

Didier Rémy. Programming objects with ML-ART: An extension to ML with abstract and record types.
In Masami Hagiya and John C. Mitchell, editors, International Symposium on Theoretical Aspects of
Computer Software, pages 321-346, Sendai, Japan, April 1994. Springer-Verlag.

J. C. Reynolds. Three approaches to type structure. In TAPSOFT proceedings, volume 185 of Lecture
notes in Computer Science, pages 97-138, 1985.

T. Sekiguchi and A. Yonezawa. A complete type inference system for subtyped recursive types. In
Proc. Theoretical Aspects of Computer Software, volume 789 of Lecture Notes in Computer Science, pages
667-686. Springer-Verlag, 1994.

M. Tofte. Type inference for polymorphic references. Information and Computation, 89:1-34, 1990.

A. Wright and M. Felleisen. A syntactic approach to type soundness. Technical Report TR91-160, Rice
University Department of Computer Science, 1991. To appear in Information and Computation.

A Proof of Subject Reduction

DEFINITION A.1 A canonical proof is a proof in which no instance of (Sub) has another instance
of (Sub) as an antecedent.

LeMMa A.2 If AFe : 7\ C has a proof, it has a canonical proof.

PRrooOF:

By induction on the original proof. There are essentially two cases:

(i) The final rule in the proof of A F e : 7\ C is not (Sub). Then by induction this rule’s
antecedents have canonical proofs, and from these proofs a canonical proof of Al e : 7\ C
can be formed using the original rule.

(ii) The final rule in the proof is (Sub). Its antecedent is therefore some proof of Ak e : 7'\ C’,
with C'w{r’ < 7} C C, and by induction it has a canonical proof. Again, there are two cases:

(a) The canonical proof of A+ e : 77\ C’ does not end in (Sub). Then a proof of A F e :

7\ C can be formed from this proof via rule (Sub), and this proof will be canonical.

16

(b) The canonical proof of A+ e : 7'\ C’ ends in (Sub). Thus it has a proof of A e :
7"\ C" as an antecedent, and this proof does not end in (Sub); also, C"w{r" < 7'} C C".
Therefore, C"W{r"” < 7} C C, and from this proof a canonical proof of Al e : 7\ C

can be constructed via rule (Sub).
a

LEMMA A.3 (CONSTRAINT SYSTEM EXTENsION) If Al|[z : Va. 7\ C]Fe : 7"\ C" and C; is
consistent with both C' and C’, with FTV(Cy) n {a} = 0, then Al|[z : Va. 7\ Cw(C3] F e :
T/ \ C/HJCl.

Proor: By induction on the structure of e. a

LEMMA A.4 (SUBSTITUTION)

(i) If All|z : Ya. 7\ C] k€ : 7"\C"and AF e : 7\ C and {a} C Clos(t \ C, A), then
AFéle/z] - '\ C".

(ii) If Al|[z : 7] F € : 7"\C", AF e : 7\ C, and C'"YC is consistent, then A + €'[e/z] :
'\ C'yC.

Proor: By induction on the structure of €’. a

LemMa A.5 (TypING OF VALUES) If v € Val and A+ (s, v) : 7\ C, then
(i) if 7 = Nat, then v € Num;

(ii) if 7 = Bool, then v € {true, false};

(i) if 7 = {m;:7; ¥, then v = {m;=v;, ... } for some v; ;
(iv) if 7 = 7'—7", then either v = Az.e for some & and e, or v € {pred, succ, is_zero, ref, !, set};

(v) if 7 = 7/ ref, then v € Var — B.

Proor: Observe that any value is in exactly one of these five disjoint subsets of Val; therefore
it suffices to show that any value in one of these subsets cannot have a type with a top level
constructor associated with another subset. Suppose for instance that A - n : Bool \ C, where
n € Num. A canonical proof of this judgement must end in (Sub) and (Num); since the conclusion
of the latter is A F n : Nat\ 0, it follows that (Sub) can only be applied if Nat \ § < Bool \ C,
which implies Nat < Bool € C'. But this constraint is inconsistent, hence the judgement is not
provable for any C'. The other cases are similar. a

THEOREM A.6 (SuBJECT REDUCTION) If A F (s, €) : K, then either e € Valorelse (s, €) —1 (s, €)
and there exists an environment A’ such that A’|gom4) = A and A" (s', €') : k.

PROOF: By induction on the structure of e. If A F (s,e) : 7\ C, then by the definition of
typability of configurations A e : 7\ C must be provable, and thus have a canonical proof. We
have the following cases to consider.

(i) e is a value. The theorem is then trivial.

17

(i)

(iif)

(iv)

e = {m; = €; } where at least one of € is not a value (otherwise e is a value and case (i) applies);
let k£ be the smallest index for which e is not a value. A canonical proof of AF {m;=¢; } :
7\ C must end in rules (Sub) and (Record), and so AF e; : 7, \ C; must be provable for
some 7; and C; such that {{mitrn} < 7wy, C; € C. Therefore A F (s, ex) : 7\ C;
hence by induction (s, eg) 1 (s, €}), and there exists an environment A’ such that A’ F
(s', €.) « 7 \ C, meaning A’ €} : 7 \ C is provable. Since reduction is compositional, we

have (s, €) —1 (s', €’), where ¢/ = {my=eq, ..., mp_1=€4_1, My =€}, Mpt1 =€41, ... }, and

A" (s, €e') : 7\ C (since A" extends A).

e = if e then e; else e3. The case of e; ¢ Val is analogous to case (ii); suppose now that
e1 € Val. A canonical proof of AF e : 7\ C must end in (Sub) and (Cond); therefore a proof
of A e; : Bool \ Cy is available, and hence (by Lemma A.5) e; € {true, false}. Consider
e1 = true; then (s, e)— (s, e3), and we also have a proof of A ey : 7\ Cy (which is a
premise of (Cond)), with C'; C C. Hence by (Sub) we may obtain A - e; : 7\ C, which
implies A+ (s, e2) : 7\ C.

Similar reasoning proves the theorem in the case of e = e;.m.

e = ey e3. A canonical proof of A+ ey e; : 7\ C must then end in rules (Sub) and (App);
therefore A ey : 79—7 \ Cy and A F ey : 75\ Cy are both provable for some 75, 71, Cy,
and Cy with C1WCW{r; < 7} C C. The cases when e; and e; are not both values are similar
to case (ii). Suppose now that both e; and e; = v are values. By Lemma A.5 there are the
following possibilities for eq:

(a) ey is an abstraction Az.e}. A canonical proof of A - Az.e] : mp—m \ C; must end in
rules (Sub) and (Abs), so Al|[z : 73] F €} : m{ \ C] is provable for some 71, 75, and C]
with Clw{rj—7{ < 79—} C C;. Since Cy is closed, this means {r; < 75} C C; C C,
and thus A F v : 70\ C by rule (Sub). By the Substitution Lemma A.4, this means
AFéel[v/z] : 1\ C,as C{WC = C. Furthermore, C' contains {7 < 7} by transitivity,
and thus A & €}[v/z] : 7\ C is provable by rule (Sub).

Therefore, (s, (Az.€}) v)—1 (s, €j[v/z]) and A F (s, €j[v/z]) : 7\ C.
(b) €1 € Var, i.e. e is a primitive function. This includes the following cases.

i. e = iszero. Since Ag(is_zero) = Nat—Bool, it must be the case that {m <
Nat, Bool < 7} C C, and therefore by Lemma A.5 the value v must be a nu-
meral n; thus (s, is_zero n) —; (s, b) for some b € {true, false}. By rule (Var) it
follows that A+ b : Bool \ §, and since {Bool < 7, 4 < 7} C C and C is closed
under transitivity, by (Sub) we have AF b : 7\ C;thus AF (s, b) : 7\ C.

The cases when e; € {pred, succ} follow in similar fashion.

ii. e7 =!. A canonical proof of A+ ! : 7—7 \ €7 must end in (Sub) and (PVar); since
A(N) = Ap(!) = Vi. t ref—t, we have {ry < 1t ref, v < 71} C C4, where 7 is the type
substituted for t in (PVar). Recall that A e; : 72 \ C; and ey is a value v; therefore
v must be a variable z, and the canonical proof of its typing ends in rules (Var) and
(Sub). Since the configuration (s, €) is typable under C, we have z € dom(s),
A(z) = 1, ref for some 7, such that 7, ref < 7 € C, and A F s(z) : 7.\ Cy is
provable for some C; C C'. Thus viarule (Sub) A+ s(z) : 7\ C is also provable, and
therefore A F (s, s(z)) : 7\ C is provable as well; observe that (s, lz) — (s, s(z)).

ili. e = ref. Similarly to the previous case we have Ag(ref) = VYu.u—u ref, and so
{m < 7y, 1y ref <71} C Cq, where 7y is the type substituted for u in (PVar). The
reduction step is (s, ref v) —1 (s||[z — v], z), for some new variable z ¢ dom(s).
Let A" = Al|[z : 7u]. Now A" F v : 7y \ Cy is provable by subsumption, and

18

A"k oz : 7\ C follows by rules (Var) and (Sub) from 7y ref <7 € C. Thus A’ F
(s||][z —v],z) : T\ C.

iv. e; = set. Since Ag(set) = Vt. { cell : t ref,val : t }—t, the canonical proof of AF e :
m,—71 \ C1 ends in (Sub) and (PVar), and assume that some 7y is substituted in the
latter for t. Then we have {r9 < {cell : 7y ref,val : ¢ }, 7t < 71} C C;. The value
v = eg is hence a record with (at least) fields cell and val; let their values be v’ and
v” respectively. From the canonical proof of typing of v we obtain proofs of A F v :
T\ C"and AF " : 7\ C" such that C'WC"w{r" < 1 ref, 7" < 1t} C C; hence v/
must be a variable z, and by the typability of (s, €) in C' it follows that z € dom(A)
and 7' = A(z) = 7, ref for some 7. Since C' is closed, {1t < 7, 7" < 7,} CC, and
hence A+ v" : 7, \ C by (Sub); also 7/ < 7 € C. Thus (s, €) —1 (s||[[z — "], v"),
and A b (s|[[z—0"],0") : 7\ C.

(v) e=let z=ey in e3. A canonical proof of A Flet =€ in ey : 7\ C must then end in rules
(Sub) and (Let). Therefore, AFe; : 74\ Cy and A||[z : Va. 71 \ C1]F ez : 72\ Cy are both
provable judgements, for some constraint systems Cy and Cy and set of type variables {a},
where ®C1WCW{r, < 7} C C and ® is some renaming of {a}. There are then two subcases:

(a) ey is a value v. Then (s, let z=v in e3) 1 (s, e2[v/z]). By the Substitution Lemma A.4
we know that A F ey[v/x] : 7 \ Cy is provable, and since Cyw{r, < 7} C C, by rule
(Sub) At eg[v/z] : 7\ C is provable as well.

(b) €1 is not a value. Then e; is expansive, and hence {a} contains only applicative

type variables. First, choose a one-to-one renaming ®; that maps {a} to variables
not occurring in C, and apply it uniformly to the proof of A F e; : 7\ Cy. This
results in a proof of A + e; : ®377 \ ®;C; (observe that ®&;A = A since by def-
inition {a} = AppClos(my \ C1, A) is disjoint with FTV(A)). Consider the renam-
ing ¢, = P o <I>1_1, which by construction maps only variables not occurring in C.
Then ®5(®1C1WC) C P3(P1C1)WP,C = ®C1WC = C, which is consistent. There-
fore ®;C1WC is consistent as well, and thus A F (s, e1) : &174 \ &:C10C is prov-
able. By induction, (s, e1)—1 (s', €}) and there exists a new environment A’ such that
AT (s, €el) » &y \ @1C1UC.
Now, consider the proof of Al|[z : Va. 7y \ C1] F ey @ 1\ Co. Since A'|gom(a) = 4,
this proof can be converted to a proof of A'||[z : Va. 7 \ C1]F ez : 73\ Cy by merely
substituting A’ for A. Because the type variables {@} are bound, this proof can be
renamed to a proof of A'||[z : Vo,a. &7 \ ®,C1]F ey @ 7\ Co. By construction C'
does not contain any of the variables in {m} Thus, by Lemma A.3, this proof can
be transformed into a proof of A'||[z : Vo,a. &7y \ ®,C1uC | Feg @ 7\ CowC, and
by rule (Let) we have a proof of A’ Flet z=¢€] iney : 7\ ®2(®1C1WC)W(CowC). But
@2(@161@0)@(02@0) C @2(@161)@@20@02@6 = oC1yCu(C = C, since both ®C
and Cy are contained in C' by hypothesis. The desired judgement then follows directly
via rule (Sub).

19

